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Welcome to Prism 8 Statistics Guide

This guide examines general principles of statistical analysis, looks at how
to conduct those analyses in Prism, and how to interpret results of these
analyses.

New to Statistical Analysis?

The Principles of Statistics™* section of this guide will help you learn
about a number of fundamental topics in statistics!

Statistics in Prism

Check out our Statistical analyses with Prism®* section of this guide to
start analyzing your data and interpreting your results!

More Guides!

You're currently browsing the Prism Statistics Guide. We also have our
User Guide, focused on getting to know Prism, and our Curve Fitting
Guide! Both of these guides do more than just explain how to use Prism.
They also explain important concepts about data analysis!

e Switch to the Prism 8 User Guide

e Switch to the Prism 8 Curve Fitting Guide

Learn about analyses with Prism

The Prism user's guide explains the general principles of analyzing data
with Prism including how to normalize or transform data, and how to
simulate data.

How to cite these pages

When citing one of these pages, reference the name of the page, the date
you accessed it and the URL. All the pages in the statistics and curve
fitting guides were written by GraphPad's founder, Harvey Motulsky.

Use this example as a guide to cite a single page:

H. J. Motulsky, "Advice: When to plot SD vs. SEM", GraphPad
Statistics Guide. Accessed 5 March 2016.
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http://www.graphpad.com/quides/prism/7/statistics/index.htm?
statwhentoplotsdvssem.htm

Note that the URL for each page in these guides is shown at the bottom of
the page. Don't use the URL you see in the browser toolbar, as that may
be generic and not apply just to the page you are looking at.

Use this example as a guide to citing the entire statistics guide:

H. J. Motulsky, GraphPad Statistics Guide. Accessed 5 March 2016.
http://www.graphpad.com/quides/prism/7/statistics/index.htm

4 PRINCIPLES OF STATISTICS

The first half of this Guide reviews general principles of statistics, and is
not at all specific to GraphPad Prism. It includes discussions of some
important issues that many statistical text books barely mention,
including:

e The problem of multiple comparisons® and the many ways you can
get trapped by multiple comparisons®®.

e Testing for equivalencel*”

e The danger of using outlier tests with lognormal distributions®* and
the problem of masking™® which can make it harder to find two
outliers than to find one.

e Why it doesn't make sense to automate the decision®** to use a
nonparametric test or not.

e The distinction between SD and SEMP*, and when to display each®.

e The advantages of reporting confidence intervals®® .

e The most common misunderstanding about P values®™, and other
misunderstandings®™.

e Why vou can't peek at the results and add more subjects if the
results are not quite significant yet.0*
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« A simple analogy to understand statistical power®®.

e A set of analysis checklists”*. Each checklist lists questions you
should ask yourself before accepting the results of a statistical
analysis.

The second half of the guide®* explains how to analyze data with Prism.
Even so, much of the content explains the alternative analyses and helps
you interpret the results. These sections will prove useful no matter which
statistical program you use.

4.1  The big picture

4.1.1 When do you need statistical calculations?

Statistical thinking will one day be as necessary for efficient citizenship as
the ability to read and write.

H. G. Wells

When analyzing data, your goal is simple: You wish to make the strongest
possible conclusion from limited amounts of data. To do this, you need to
overcome two problems:

e Important findings can be obscured by biological variability and
experimental imprecision. This makes it difficult to distinguish real
differences from random variation.

e The human brain excels at finding patterns, even in random data. Our
natural inclination (especially with our own data) is to conclude that
differences are real and to minimize the contribution of random
variability. Statistical rigor prevents you from making this mistake.

Statistical analyses are necessary when observed differences are small
compared to experimental imprecision and biological variability.

Some scientists ask fundamental questions using clean experimental
systems with no biological variability and little experimental error. If this
describes your work, you can heed these aphorisms:

e If you need statistics to analyze your experiment, then you've done
the wrong experiment.

o If your results speak for themselves, don't interrupt!
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Other scientists work in fields where they look for relatively small
differences in the face of large amounts of variability. In these fields,
statistical methods are essential.

4.1.2 The essential concepts of statistics

If you know twelve concepts about a given topic you will look like an
expert to people who only know two or three.

Scott Adams, creator of Dilbert

When learning statistics, it is easy to get bogged down in the details, and
lose track of the big picture. Here are the twelve most important concepts
in statistical inference.

Statistics lets you make general conclusions from limited data.

The whole point of inferential statistics is to extrapolate from limited data
to make a general conclusion. "Descriptive statistics" simply describes
data without reaching any general conclusions. But the challenging and

difficult aspects of statistics are all about reaching general conclusions
from limited data.

Statistics is not intuitive.

The word ‘intuitive’ has two meanings. One meaning is “easy to use and
understand.” That was my goal when I wrote Intuitive Biostatistics. The
other meaning of 'intuitive' is “instinctive, or acting on what one feels to
be true even without reason.” Using this definition, statistical reasoning is
far from intuitive. When thinking about data, intuition often leads us
astray. People frequently see patterns in random data and often jump to
unwarranted conclusions. Statistical rigor is needed to make valid
conclusions from data.

Statistical conclusions are always presented in terms of probability.

"Statistics means never having to say you are certain." If a statistical
conclusion ever seems certain, you probably are misunderstanding
something. The whole point of statistics is to quantify uncertainty.
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All statistical tests are based on assumptions.

Every statistical inference is based on a list of assumptions. Don't try to
interpret any statistical results until after you have reviewed that list. An
assumption behind every statistical calculation is that the data were
randomly sampled, or at least representative of, a larger population of
values that could have been collected. If your data are not representative
of a larger set of data you could have collected (but didn't), then
statistical inference makes no sense.

Decisions about how to analyze data should be made in advance.

Analyzing data requires many decisions. Parametric or nonparametric
test? Eliminate outliers or not? Transform the data first? Normalize to
external control values? Adjust for covariates? Use weighting factors in
regression? All these decisions (and more) should be part of experimental
design. When decisions about statistical analysis are made after
inspecting the data, it is too easy for statistical analysis to become a
high-tech Ouja board -- a method to produce preordained results, rather
an objective method of analyzing data. The new name for this is p-
hacking.

A confidence interval quantifies precision, and is easy to interpret.

Say you've computed the mean of a set of values you've collected,or the
proportion of subjects where some event happened. Those values
describe the sample you've analyzed. But what about the overall
population you sampled from? The true population mean (or proportion)
might be higher, or it might be lower. The calculation of a 95% confidence
interval takes into account sample size and scatter. Given a set of
assumptions, you can be 95% sure that the confidence interval includes
the true population value (which you could only know for sure by
collecting an infinite amount of data). Of course, there is nothing special
about 95% except tradition. Confidence intervals can be computed for
any degree of desired confidence. Almost all results -- proportions,
relative risks, odds ratios, means, differences between means, slopes,
rate constants... -- should be accompanied with a confidence interval.

A P value tests a null hypothesis, and is hard to understand at first.
The logic of a P value seems strange at first. When testing whether two

groups differ (different mean, different proportion, etc.), first hypothesize
that the two populations are, in fact, identical. This is called the null
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hypothesis. Then ask: If the null hypothesis were true, how unlikely
would it be to randomly obtain samples where the difference is as large
(or even larger) than actually observed? If the P value is large, your data
are consistent with the null hypothesis. If the P value is small, there is
only a small chance that random chance would have created as large a
difference as actually observed. This makes you question whether the null
hypothesis is true. If you can't identify the null hypothesis, you cannot
interpret the P value.

"Statistically significant" does not mean the effect is large or scientifically
important.

If the P value is less than 0.05 (an arbitrary, but well accepted
threshold), the results are deemed to be statistically significant. That
phrase sounds so definitive. But all it means is that, by chance alone, the
difference (or association or correlation..) you observed (or one even
larger) would happen less than 5% of the time. That's it. A tiny effect that
is scientifically or clinically trivial can be statistically significant (especially
with large samples). That conclusion can also be wrong, as you'll reach a
conclusion that results are statistically significant 5% of the time just by
chance.

"Not significantly different"” does not mean the effect is absent, small or
scientifically irrelevant.

If a difference is not statistically significant, you can conclude that the
observed results are not inconsistent with the null hypothesis. Note the
double negative. You cannot conclude that the null hypothesis is true. It
is quite possible that the null hypothesis is false, and that there really is a
difference between the populations. This is especially a problem with
small sample sizes. It makes sense to define a result as being
statistically significant or not statistically significant when you need to
make a decision based on this one result. Otherwise, the concept of
statistical significance adds little to data analysis.

Multiple comparisons make it hard to interpret statistical results.

When many hypotheses are tested at once, the problem of multiple
comparisons makes it very easy to be fooled. If 5% of tests will be
"statistically significant" by chance, you expect lots of statistically
significant results if you test many hypotheses. Special methods can be
used to reduce the problem of finding false, but statistically significant,
results, but these methods also make it harder to find true effects.
Multiple comparisons can be insidious. It is only possible to correctly

© 1995-2020 GraphPad Software, LLC



PRINCIPLES OF STATISTICS 17

interpret statistical analyses when all analyses are planned, and all
planned analyses are conducted and reported. However, these simple
rules are widely broken.

Correlation does not mean causation.

A statistically significant correlation or association between two variables
may indicate that one variable causes the other. But it may just mean
that both are influenced by a third variable. Or it may be a coincidence.

Published statistics tend to be optimistic.

By the time you read a paper, a great deal of selection has occurred.
When experiments are successful, scientists continue the project. Lots of
other projects get abandoned.When the project is done, scientists are
more likely to write up projects that lead to remarkable results, or to
keep analyzing the data in various ways to extract a "statistically
significant" conclusion. Finally, journals are more likely to publish
“positive” studies. If the null hypothesis were true, you would expect a
statistically significant result in 5% of experiments. But those 5% are
more likely to get published than the other 95%.

4.1.3 Extrapolating from 'sample’ to 'population’
The basic idea of statistics is simple:
You want to use limited amounts of data to make general conclusions.

To do this, statisticians have developed methods based on a simple
model: Assume that an infinitely large population of values exists and
that your data (your 'sample') was randomly selected from this
population. Analyze your sample and use the rules of probability to make
inferences about the overall population.

This model is an accurate description of some situations. For example,
quality control samples really are randomly selected from a large
population. Clinical trials do not enroll a randomly selected sample of
patients, but it is usually reasonable to extrapolate from the sample you
studied to the larger population of similar patients.
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In a typical experiment, you don't really sample from a population, but
you do want to extrapolate from your data to a more general conclusion.
The concepts of sample and population can still be used if you define the
sample to be the data you collected and the population to be the data you
would have collected if you had repeated the experiment an infinite
number of times.

The problem is that the statistical inferences can only apply to the
population from which your samples were obtained, but you often want to
make conclusions that extrapolate even beyond that large population. For
example, you perform an experiment in the lab three times. All the
experiments used the same cell preparation, the same buffers, and the
same equipment. Statistical inferences let you make conclusions about
what would probably happen if you repeated the experiment many more
times with that same cell preparation, those same buffers, and the same
equipment.

You probably want to extrapolate further to what would happen if
someone else repeated the experiment with a different source of cells,
freshly made buffer, and different instruments. Unfortunately, statistical
calculations can't help with this further extrapolation. You must use
scientific judgment and common sense to make inferences that go beyond
the limitations of statistics.

4.1.4 Why statistics can be hard to learn

Three factors make statistics hard to learn for some.
Probability vs. statistics

The whole idea of statistics is to start with a limited amount of data and
make a general conclusion (stated in terms of probabilities). In other
words, you use the data in your sample to make general conclusions
about the population from which the data were drawn.

Probability theory goes the other way. You start with knowledge about the
general situation, and then compute the probability of various outcomes.
The details are messy, but the logic is pretty simple.
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Statistical calculations rest on probability theory, but the logic of
probability is opposite to the logic of statistics. Probability goes from
general to specific, while statistics goes from specific to general. Applying
the mathematics of probability to statistical analyses requires reasoning
that can sometimes seem convoluted.

Statistics uses ordinary words in unusual ways

All fields have technical terms with specific meanings. In many cases,
statistics uses words that you already know, but give them specific
meaning. "Significance", "hypothesis", "confidence", "error", "normal"” are
all common words that statistics uses in very specialized ways. Until you
learn the statistical meaning of these terms, you can be very confused
when reading statistics books or talking to statisticians. The problem isn't
that you don't understand a technical term. The problem is that you think
you know what the term means, but are wrong. As you read these help
screens be sure to pay attention to familiar terms that have special
meanings in statistics.

When I use a word, it means just what I choose it to mean —
neither more nor less.

Humpty Dumpty (amateur statistician) in Through the Looking Glass

Statistics is on the interface of math and science

Statistics is a branch of math, so to truly understand the basis of
statistics you need to delve into the mathematical details. However, you
don't need to know much math to use statistics effectively and to
correctly interpret the results. Many statistics books tell you more about
the mathematical basis of statistics than you need to know to use
statistical methods effectively. The focus here is on selecting statistical
methods and making sense of the results, so this presentation uses very
little math. If you are a math whiz who thinks in terms of equations, you'll
want to learn statistics from a mathematical book.

Parts of this page are excerpted from Chapter 2 of Motulsky, H.J. (2010).
Intuitive Biostatistics, 2nd edition. Oxford University Press. ISBN=978-0-
19-973006-3.
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4.1.5 Don't be a P-hacker
Overview
Vickers told this story (1):
Statistician: "Oh, so you have already calculated the P value?"
Surgeon: "Yes, I used multinomial logistic regression."
Statistician: "Really? How did you come up with that?"

Surgeon: "Well, I tried each analysis on the SPSS drop-down menus,
and that was the one that gave the smallest P value".

Basic rules of statistics

For statistical analyses to be interpretable at face value, it is essential
that these three statements be true:

¢ All analyses were planned.

¢ All planned analyses were conducted exactly as planned and then
reported.

¢ You take into account all the analyses when interpreting the results.

These simple and sensible rules are commonly violated in many ways as
explained below.

Multiple ways to preprocess the data

Before the data are analyzed, some decisions get made. Which values
should be deleted because they are so high or so low that they are
considered to be mistakes? Whether and how to normalize? Whether and
how to transform the data?

Sequential Analyses (ad hoc sample size determination)
To properly interpret a P value, the experimental protocol has to be set in

advance. Usually this means choosing a sample size, collecting data, and
then analyzing it.
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But what if the results aren’t quite statistically significant? It is tempting
to run the experiment a few more times (or add a few more subjects),
and then analyze the data again, with the larger sample size. If the
results still aren’t “significant”, then do the experiment a few more times
(or add more subjects) and reanalyze once again.

When data are analyzed in this way, it is impossible to interpret the
results. This informal sequential approach should not be used.

If the null hypothesis of no difference is in fact true, the chance of
obtaining a “statistically significant” result using that informal sequential
approach is far higher than 5%. In fact, if you carry on that approach long
enough, then every single experiment will eventually reach a “significant”
conclusion, even if the null hypothesis is true. Of course, “long enough”
might be very long indeed and exceed your budget or even your lifespan.

The problem is that the experiment continues when the result is not
“significant”, but stops when the result is “significant”. If the experiment
was continued after reaching “significance”, adding more data might then
result in a “not significant” conclusion. But you’d never know this,
because the experiment would have been terminated once "“significance”
was reached. If you keep running the experiment when you don’t like the
results, but stop the experiment when you like the results, the results are
impossible to interpret.

Statisticians have developed rigorous ways to handle sequential data
analysis. These methods use much more stringent criteria to define
“significance” to account for the sequential analyses. Without these
special methods, you can’t interpret the results unless the sample size is
set in advance

Multiple Subgroups

Analyzing multiple subgroups of data is a form of multiple comparisons.
When a treatment works in some subgroups but not others, analyses of
subgroups becomes a form of multiple comparisons and it is easy to be
fooled.

A simulated study by Lee and coworkers points out the problem. They
pretended to compare survival following two “treatments” for coronary
artery disease. They studied a group of real patients with coronary artery
disease who they randomly divided into two groups. In a real study, they
would give the two groups different treatments, and compare survival. In
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this simulated study, they treated the subjects identically but analyzed
the data as if the two random groups actually represented two distinct
treatments. As expected, the survival of the two groups was
indistinguishable (2).

They then divided the patients into six groups depending on whether they
had disease in one, two, or three coronary arteries, and depending on
whether the heart ventricle contracted normally or not. Since these are
variables that are expected to affect survival of the patients, it made
sense to evaluate the response to “treatment” separately in each of the
Six subgroups. Whereas they found no substantial difference in five of the
subgroups, they found a striking result among the sickest patients. The
patients with three-vessel disease who also had impaired ventricular
contraction had much better survival under treatment B than treatment
A. The difference between the two survival curves was statistically
significant with a P value less than 0.025.

If this were an actual study, it would be tempting to conclude that
treatment B is superior for the sickest patients, and to recommend
treatment B to those patients in the future. But this was not a real study,
and the two “treatments” reflected only random assignment of patients.
The two treatments were identical, so the observed difference was
absolutely positively due to chance.

It is not surprising that the authors found one low P value out of six
comparisons. There is a 26% chance that one of six independent
comparisons will have a P value less than 0.05, even if all null hypotheses
are true.

If all the subgroup comparisons are defined in advance, it is possible to
correct for many comparisons - either as part of the analysis or informally
while interpreting the results. But when this kind of subgroup analysis is
not defined in advance, it becomes a form of “data torture”.

Multiple Predictions

In 2000, the Intergovernmental Panel on Climate Change made
predictions about future climate. Pielke asked what seemed like a
straightforward question: How accurate were those predictions over the
next seven years? That’s not long enough to seriously assess predictions
of global warming, but it is a necessary first step. Answering this question
proved to be impossible. The problems are that the report contained
numerous predictions, and didn’t specify which sources of climate data
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should be used. Did the predictions come true? The answer depends on
the choice of which prediction to test and which data set you test it
against -- “a feast for cherry pickers” (3)

You can only evaluate the accuracy of predictions or diagnoses when the
prediction unambiguously stated what was being predicted and when it
would happen.

Combining Groups

When comparing two groups, the groups must be defined as part of the
study design. If the groups are defined by the data, many comparisons
are being made implicitly and ending the results cannot be interpreted.

Austin and Goldwasser demonstrated this problem(4). They looked at the
incidence of hospitalization for heart failure in Ontario (Canada) in twelve
groups of patients defined by their astrological sign (based on their
birthday). People born under the sign of Pisces happened to have the
highest incidence of heart failure. They then did a simple statistics test to
compare the incidence of heart failure among people born under Pisces
with the incidence of heart failure among all others (born under all the
other eleven signs, combined into one group). Taken at face value, this
comparison showed that the difference in incidence rates is very unlikely
to be due to chance (the P value was 0.026). Pisces have a “statistically
significant” higher incidence of heart failure than do people born in the
other eleven signs.

The problem is that the investigators didn’t test really one hypothesis;
they tested twelve. They only focused on Pisces after looking at the
incidence of heart failure for people born under all twelve astrological
signs. So it isn't fair to compare that one group against the others,
without considering the other eleven implicit comparisons. After
correcting for those multiple comparisons, there was no significant
association between astrological sign and heart failure.

Multiple regression, logistic regression, etc.

Fitting a multiple regression model provides even more opportunities to
try multiple analyses:

e Try including or excluding possible confounding variables.

e Try including or excluding interactions.
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e Change the definition of the outcome variable.

e Transform the outcome or any of the independent variables to
logarithms or reciprocals or something else.

Unless these decisions were made in advance, the results of multiple
regression (or multiple logistic or proportional hazards regression) cannot
be interpreted at face value.

Chapter 38 of Intuitive Biostatistics(8) explains this problem of
overfitting, as does Babyok (5).

The garden of forking paths

In some cases, you first look at the data (and perhaps do a preliminary
analysis) and then decide what test to run next depending on those
values. Gelman calls this "the garden of forking paths" and states that it
is a form of multiple comparisons (10).

Publication Bias

Editors prefer to publish papers that report results that are statistically
significant. Interpreting published results becomes problematic when
studies with “not significant” conclusions are abandoned, while the ones
with “statistically significant” results get published. This means that the
chance of observing a ‘significant’ result in a published study can be much
greater than 5% even if the null hypotheses are all true.

Turner demonstrated this kind of selectivity -- called publication bias -- in
industry-sponsored investigations of the efficacy of antidepressant drugs
(6). Between 1987 and 2004, the Food and Drug Administration (FDA)
reviewed 74 such studies, and categorized them as “positive”, “negative”
or “questionable”. The FDA reviewers found that 38 studies showed a
positive result (the antidepressant worked). All but one of these studies
was published. The FDA reviewers found that the remaining 36 studies
had negative or questionable results. Of these, 22 were not published, 11
were published with a ‘spin’ that made the results seem somewhat
positive, and only 3 of these negative studies were published with clear
negative findings.

The problem is a form of multiple comparisons. Many studies are done,
but only some are published, and these are selected because they show
"desired" results.
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Bottom line

Statistical analyses can be interpreted at face value only when all steps
are planned, all planned analyses are published, and all the results are
considered when reaching conclusions. These simple rules are violated in
many ways in common statistical practice.

If you try hard enough, eventually ‘statistically significant’ findings will
emerge from any reasonably complicated data set. This is called data
torture (6) or P-hacking (9). When reviewing results, you often can't
even correct for the number of ways the data were analyzed since the
number of possible comparisons was not defined in advance, and is
almost unlimited. When results were analyzed many ways without a plan,
the results simply cannot be interpreted. At best, you can treat the
findings as an hypothesis to be tested in future studies with new data.
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How to report statistical results

The guidelines below are an opinionated guide about how to present data
and analyses. Of course, you also need to report details of experimental
design, including blinding and randomization.

Overall
e Every statistical paper should report all methods (including those used
to process and analyze the data) completely enough so someone else

could reproduce the work exactly.

e Every figure and table should present the data clearly (and not be
exaggerated in a way to emphasize your conclusion).

e All the results should be reported completely enough that no one
wonders what you actually did.
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The analyses before the analyses

¢ Did you decide to normalize? Remove outliers? Transform to
logarithms? Smooth? Remove a baseline? Justify these decisions, and
report enough details so anyone could start with your data and get
exactly the same results. State whether these calculations were
preplanned or only decided upon after seeing the data.

e If outliers were eliminated, say how many there were, what criteria
you used to identify them, and whether these criteria were chosen in
advance as part of the experimental design.

Sample size

e Report how you chose sample size™™.

e Explain exactly what was counted when reporting sample size. When
you say n=3, do you mean three different animals, three different
assays on tissue from one animal, one assay from tissue pooled from
three animals, three repeat counts in a gamma counter from a
preparation made from one run of an experiment...?

e State whether you choose sample size in advance®", or adjusted
sample size in an ad hoc manner as you saw the results accumulate.

e If the sample sizes of the groups are not equal, explain why.

Avoid P-hacking

e For each analysis (usually for each figure and table), state whether
every step in data analysis followed a preplanned protocol or not. If
you only decided to remove outliers after seeing the data, say so. If
you only decided to use a nonparametric test after seeing the data,
say so. If you only decided to analyze the logarithms of the data after
viewing the data, say so.

e If you don't show every analysis you did, at least describe and
enumerate them.

e If you started with one sample size and ended with another sample
size, explain exactly how you decided to add additional samples and/or
eliminate samples. State whether these decisions were based on a
preset protocol, or were decided during the course of the experiment.
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Graphing data

e Present data clearly. Focus on letting the reader see the data, and not
only your conclusions.

e When possible, graph the individual data, not a summary of the data.
If there are too many values to show in scatter plots, consider box-
and-whisker plots or frequency distributions.

e If you choose to plot means with error bars, graph standard
deviation®* error bars which show variability, rather than standard
error of the mean®™" error bars, which do not.

Statistical methods

e State the full name of the test. Don't say "t test", say "paired t test".

e Identify the program of the program that did the calculations
(including detailed version humber, which for GraphPad Prism might

be 7.01).

e State all options you selected. Repeated measures? Correcting for
unequal variances? Robust regression? Constraining parameters?
Sharing parameters? Report enough detail so anyone could start with
your data and get precisely the same results you got.

Reporting effect size

e The most important result of most experiments is an effect size. How
big was the difference (or ratio or percent increase)? Or how strongly
were two variables correlated? In almost all cases, you can summarize
this effect size with a single value and should report this effect with a
confidence interval, usually the 95% interval. This is by far the most
important finding to report in a paper and its abstract.

e Consider showing a graph of effect sizes (i.e. differences or ratios)
with 95% confidence intervals.

Reporting P values

e When possible, report the P value as a humber with a few digits of
precision, not an inequality. For example say "the P value was 0.0234"
rather than "P < 0.05".
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e If there is any possible ambiguity, clearly state the null hypothesis the
P value tests. If you don't know the null hypothesis, then you shouldn't
report a P value (since every P value tests a null hypothesis)!

e When comparing two groups, state if the P value is one- or two-
sided™™ (which is the same as one- or two-tailed). If one-sided, state
that you predicted the direction of the effect before collecting data
(and recorded this prediction), and recorded that decision and
prediction. If you didn't make this decision and prediction before
collecting data, you should not report a one-sided P value.

Reporting statistical hypothesis testing (significance)

e Statistical hypothesis testing is used to make a firm decision based on
a single P value. One use is choosing between the fit of two alternative
models. If the P value is less than a preset threshold you pick one
model, otherwise the other. When doing this, state both models, the
method you are using to choose between them, the preset threshold P
value, and the model you chose. Perhaps also report the goodness of
fit of both models.

e When comparing groups, you don't always make a decision based on
the result. If you are making a crisp decision, report the threshold P
value, whether the computed P value was greater or less than the
threshold, and the accompanying decision. If you are not making a
decision, report the effect with its confidence interval, and perhaps a P
value. If you are not making a decision based on that P value, then it
doesn't really matter whether or not the P value was less than a
threshold or not, and the whole idea of statistical hypothesis testing
isn't really useful.

e The word "significant" has two related meanings, so has caused lots of
confusion in science. The two bullet points above demonstrate that the
results of statistical hypothesis testing can (and in my opinion should)
be reported without using the word "significant". If you do choose to
use the word "significant" in this context, always precede it with
"statistically", so there is no confusion.

e Never use the word "significant" when discussing the clinical or
physiological impact of a result. Instead use words like "large",
"substantial", and "clinically relevant". Using "significant" in this
context just leads to confusion.
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Multiple comparisons

e Multiple comparisons must be handled thoughtfully, and all steps must
be documented. Note that the problem of multiple comparisons is
widespread®", and isn't just an issue when doing follow-up tests after
ANOVA.

e State whether or not all comparisons were planned, and all planned
comparisons were reported. If you report unplanned comparisons or
omit some comparisons, the results must be identified as preliminary.

e If you used any correction for multiple comparisons, explain the
details.

e If you report multiplicity adjusted P values, point out clearly that these
P values were adjusted.

Other guides to presenting statistical results
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4.1.7 Ordinal, interval and ratio variables

Many statistics books begin by defining the different kinds of variables
you might want to analyze. This scheme was developed by S. Stevens
and published in 1946.

Definitions

A categorical variable, also called a nominal variable, is for mutually
exclusive, but not ordered, categories. For example, your study might
compare five different genotypes. You can code the five genotypes with
numbers if you want, but the order is arbitrary and any calculations (for
example, computing an average) would be meaningless.
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An ordinal variable, is one where the order matters but not the
difference between values. For example, you might ask patients to
express the amount of pain they are feeling on a scale of 1 to 10. A score
of 7 means more pain than a score of 5, and that is more than a score of
3. But the difference between the 7 and the 5 may not be the same as
that between 5 and 3. The values simply express an order. Another
example would be movie ratings, from * to ****x*,

An interval variable is a one where the difference between two values is
meaningful. The difference between a temperature of 100 degrees and 90
degrees is the same difference as between 90 degrees and 80 degrees.

A ratio variable, has all the properties of an interval variable, but also
has a clear definition of 0.0. When the variable equals 0.0, there is none
of that variable. Variables like height, weight, enzyme activity are ratio
variables. Temperature, expressed in F or C, is not a ratio variable. A
temperature of 0.0 on either of those scales does not mean 'no heat.
However, temperature in Kelvin is a ratio variable, as 0.0 Kelvin really
does mean 'no heat'. Another counter example is pH. It is not a ratio
variable, as pH=0 just means 1 molar of H+. and the definition of molar is
fairly arbitrary. A pH of 0.0 does not mean 'no acidity' (quite the
opposite!). When working with ratio variables, but not interval variables,
you can look at the ratio of two measurements. A weight of 4 grams is
twice a weight of 2 grams, because weight is a ratio variable. A
temperature of 100 degrees C is not twice as hot as 50 degrees C,
because temperature C is not a ratio variable. A pH of 3 is not twice as
acidic as a pH of 6, because pH is not a ratio variable.

The categories are not as clear cut as they sound. What kind of variable is
color? In some experiments, different colors would be regarded as
nominal. But if color is quantified by wavelength, then color would be
considered a ratio variable. The classification scheme really is somewhat
fuzzy.
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What is OK to compute

|OK to compute.... Nominal | Ordinal | Interval Ratio
frequency

distribution Yes Yes Yes Yes
median _and No Yes Yes Yes
percentiles

sum or difference No No Yes Yes

mean, standard
deviation, standard No No Yes Yes
error of the mean

ratio, or coefficient

of variation No No No Yes

Does it matter?

It matters if you are taking an exam in statistics, because this is the kind
of concept that is easy to test for.

Does it matter for data analysis? The concepts are mostly pretty obvious,
but putting names on different kinds of variables can help prevent
mistakes like taking the average of a group of postal (zip) codes, or
taking the ratio of two pH values. Beyond that, putting labels on the
different kinds of variables really doesn't really help you plan your
analyses or interpret the results.

4.1.8 The need for independent samples

Statistical tests are based on the assumption that each subject (or each
experimental unit) was sampled independently of the rest. Data are
independent when any random factor that causes a value to be too high
or too low affects only that one value. If a random factor (one that you
didn't account for in the analysis of the data) can affect more than one
value, but not all of the values, then the data are not independent.

The concept of independence can be difficult to grasp. Consider the
following three situations.
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e You are measuring blood pressure in animals. You have five animals in
each group, and measure the blood pressure three times in each
animal. You do not have 15 independent measurements. If one animal
has higher blood pressure than the rest, all three measurements in
that animal are likely to be high. You should average the three
measurements in each animal. Now you have five mean values that
are independent of each other.

e You have done a biochemical experiment three times, each time in
triplicate. You do not have nine independent values, as an error in
preparing the reagents for one experiment could affect all three
triplicates. If you average the triplicates, you do have three
independent mean values.

e You are doing a clinical study and recruit 10 patients from an inner-
city hospital and 10 more patients from a suburban clinic. You have
not independently sampled 20 subjects from one population. The data
from the 10 inner-city patients may be more similar to each other than
to the data from the suburban patients. You have sampled from two
populations and need to account for that in your analysis.

4.1.9 Intuitive Biostatistics (the book)

H.J. Motulsky, Intuitive Biostatistics, ISBN: 978-
A 0199946648, 3rd edition 2014

L
o

y

y

Table of contents

INTUITIVE ===

BIOSTATISTICS Reviews

Intuitive Biostatistics is a beautiful book that has much to teach
experimental biologists of all stripes. Unlike other statistics texts I have
seen, it includes extensive and carefully crafted discussions of the perils
of multiple comparisons, warnings about common and avoidable mistakes
in data analysis, a review of the assumptions that apply to various tests,
an emphasis on confidence intervals rather than P values, explanations as
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to why the concept of statistical significance is rarely needed in scientific
work, and a clear explanation of nonlinear regression (commonly used in
labs,; rarely explained in statistics books).

In fact, I am so pleased with Intuitive Biostatistics that I decided to make
it the reference of choice for my postdoctoral associates and graduate
students, all of whom depend on statistics, and most of whom need a
closer awareness of precisely why. Motulsky has written thoughtfully, with
compelling logic and wit. He teaches by example what one may expect of
statistical methods and perhaps just as importantly, what one may not
expect of them. He is to be congratulated for this work, which will surely
be valuable and perhaps even transformative for many of the scientists
who read it.

—Bruce Beutler, 2011 Nobel Laureate, Physiology or Medicine, Director,
Center for the Genetics of Host Defense, UT Southwestern Medical Center

If you like the style of this guide, you'll also appreciate the introductory
text I wrote: Intuitive Biostatistics.

Overview

Intuitive Biostatistics is both an introduction and review of statistics.
Compared to other books, it has:

e Breadth rather than depth. It is a guidebook, not a cookbook.
e Words rather than math. It has few equations.

e Explanations rather than recipes. This book presents few details of
statistical methods and only a few tables required to complete the
calculations.

Who is it for?
I wrote Intuitive Biostatistics for three audiences:

e Medical (and other) professionals who want to understand the
statistical portions of journals they read. These readers don’t need to
analyze any data, but need to understand analyses published by others.
I've tried to explain the big picture, without getting bogged down in too
many details.
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e Undergraduate and graduate students, post-docs and researchers who
will analyze data. This book explains general principles of data analysis,
but it won't teach you how to do statistical calculations or how to use
any particular statistical program. It makes a great companion to the
more traditional statistics texts and to the documentation of statistical
software.

e Scientists who consult with statisticians. Statistics often seems like a
foreign language, and this text can serve as a phrase book to bridge the
gap between scientists and statisticians. Sprinkled throughout the book
are “Lingo” sections that explain statistical terminology, and point out
when statistics gives ordinary words very specialized meanings (the
source of much confusion).

4.1.10 Essential Biostatistics (the book)

Some ways in which this book is unique
BIESS}i%Tl.‘:‘L e It doesn't explain how to calculate any
PNS h ST_ IFS statistical tests. In fact, it only includes two
VApprosch equations.

e Chapter 1 is a fun chapter that explains how
common sense can lead you astray and why we
therefore need to understand statistical
principles.

larvey Motulsky

e Chapter 2 is a unique approach to appreciating
the complexities of probability.

e I introduce statistical thinking with Chapter 4,
which explains the confidence interval of a

Egllert?;:'”s‘(y proportion. This lets me explain the logic of
Biostatistics generalizing from sample to population using a
ISBN: 978- ! confidence interval before having to deal with
0199365067 concepts about how to quantify the scatter.
$20

e I explain comparing groups with confidence
intervals (Chapter 12) before explaining P
values (Chapter 13) and statistical significance
(Chapters 14 and 15). This way I could delay as
long as possible dealing with the confusing

See the table of
contents and two full
chapters at
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www.essentialbiostati concept of a P value and the overused word

stics.com “significant”.

e Chapter 16 explains how common Type I errors
are, and the difference between a significance
level and the false discovery rate.

e Chapter 19 explains all common statistical tests
as a series of tables.

e I include topics often omitted from introductory
texts, but that I consider to be essential,
including: multiple comparisons, the false
discovery rate, p-hacking, lognormal
distributions, geometric mean, normality tests,
outliers and nonlinear regression.

e Nearly every chapter has a Lingo section
explaining how statistical terminology can be
misunderstood.

e Nearly every chapter includes a Common
Mistakes section, and Chapter 25 explains more
general mistakes to avoid.

"Essential Biostatistics distills the essence of university-level biostatistics
topics in accessible concise language that is engaging and thought-
provoking. Students and practitioners of biostatistics will find Intuitive
Biostatistics: The Essentials to be an excellent resource that provides
clarity on major statistical concepts and procedures while also
illuminating erroneous statistical conclusions many fall prey to. This text
would be an excellent companion to a traditional biostatistics book."
--Derek Webb, Bemidji State University

"The author does a great job explaining why we use statistics rather than
getting bogged down explaining how we calculate statistics. I find it
refreshing to step back from the calculations to see the larger context of
why we use statistics in science." )

--Dean W. Coble, Stephen F. Austin StateA University
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"I really like the clear and humorous style, the wealth of examples, and
the discussions of the limits and pitfalls. This is a wonderful book."
--Naji Younes, George Washington University

"Motulsky seems to have done the impossible, again. He has taken his
already great textbook and extracted the bare-bones necessary for the
reader to enjoy a lively, easy-to-read introduction to the concepts of
biostatistics. In addition, Motulsky provides the reader with a discussion
of common mistakes and how to avoid them. This is invaluable for a true
understanding of biostatistics. Essential Biostatistics should be required
reading for all beginning biology or biostatistics students. It provides
foundational material for interpreting statistical analysis."

--Philip Hejduk, University of Texas at Arlington

4.2 The Gaussian distribution

"Everybody believes in the [Gaussian distribution]:
the experimenters, because they think it can be
proved by mathematics; and the mathematicians,
because they believe it has been established by

observation."

W. Lippmann

4.2.1 Importance of the Gaussian distribution

Statistical tests analyze a particular set of data to make more general
conclusions. There are several approaches to doing this, but the most
common is based on assuming that data in the population have a certain
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distribution. The distribution used most commonly by far is the bell-
shaped Gaussian distribution, also called the Normal distribution. This
assumption underlies many statistical tests such as t tests and ANOVA, as
well as linear and nonlinear regression.

When reading in other books about the Gaussian distribution, two
statistical terms might be confusing because they sound like ordinary
words:

e In statistics, the word “normal” is another name for a Gaussian, bell-
shaped, distribution. In other contexts, of course, the word “normal”
has very different meanings (absence of disease or common).

e Statisticians refer to the scatter of points around the line or curve as
“error”. This is a different use of the word than is used ordinarily. In
statistics, the word “error” simply refers to deviation from the
average. The deviation is usually assumed to be due to biological
variability or experimental imprecision, rather than a mistake (the
usual use of the word “error”).

4.2.2 Origin of the Gaussian distribution

The Gaussian distribution emerges when many independent random
factors act in an additive manner to create variability. This is best seen by
an example.

Imagine a very simple “experiment”. You pipette some water and weigh
it. Your pipette is supposed to deliver 10 microliter of water, but in fact
delivers randomly between 9.5 and 10.5 microliters. If you pipette one
thousand times and create a frequency distribution histogram of the
results, it will look like the figure below.
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Number of experiments

9.5 946 9.7 948 99 10.0 101 10.2 10.5 10.4 10.5
Weight in milligrams

The average weight is 10 milligrams, the weight of 10 microliters of water
(at least on earth). The distribution is flat, with no hint of a Gaussian
distribution.

Now let's make the experiment more complicated. We pipette twice and

weigh the result. On average, the weight will now be 20 milligrams. But

you expect the errors to cancel out some of the time. The figure below is
what you get.

100+

Number of experiments

0
19.0 19.5 20.0 20.5 21.0

Weight in milligrams

Each pipetting step has a flat random error. Add them up, and the
distribution is not flat. For example, you'll get weights near 21 mg only if
both pipetting steps err substantially in the same direction, and that is
rare.
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Now let's extend this to ten pipetting steps, and look at the distribution of
the sums.

100

Number of experiments
2
[

a7 98 99 100 101 102 103
Weight in milligrams

The distribution looks a lot like an ideal Gaussian distribution. Repeat the
experiment 15,000 times rather than 1,000 and you get even closer to a
Gaussian distribution.

15004

1000+

500

Number of experiments

0=
a7 93 99 100 1M 102 103
Weight in milligrams

This simulation demonstrates a principle that can also be mathematically
proven. Scatter will approximate a Gaussian distribution if your
experimental scatter has numerous sources that are additive and of
nearly equal weight, and the sample size is large.

The Gaussian distribution is a mathematical ideal. Few biological
distributions, if any, really follow the Gaussian distribution. The Gaussian
distribution extends from negative infinity to positive infinity. If the
weights in the example above really were to follow a Gaussian
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distribution, there would be some chance (albeit very small) that the
weight is negative. Since weights can't be negative, the distribution
cannot be exactly Gaussian. But it is close enough to Gaussian to make it
OK to use statistical methods (like t tests and regression) that assume a
Gaussian distribution.

4.2.3 The Central Limit Theorem of statistics

The Gaussian distribution plays a central role in statistics because of a
mathematical relationship known as the Central Limit Theorem. To
understand this theorem, follow this imaginary experiment:

1. Create a population with a known distribution (which does not have to
be Gaussian).

2. Randomly pick many samples of equal size from that population.
Tabulate the means of these samples.

3. Draw a histogram of the frequency distribution of the means.

The central limit theorem says that if your samples are large enough, the
distribution of means will follow a Gaussian distribution even if the
population is not Gaussian. Since most statistical tests (such as the t test
and ANOVA) are concerned only with differences between means, the
Central Limit Theorem lets these tests work well even when the
populations are not Gaussian. For this to be valid, the samples have to be
reasonably large. How large is that? It depends on how far the population
distribution differs from a Gaussian distribution. Assuming the population
doesn't have a really unusual distribution, a sample size of 10 or so is
generally enough to invoke the Central Limit Theorem.

To learn more about why the ideal Gaussian distribution is so useful, read
about the Central Limit Theorem in any statistics text.

4.3 Standard Deviation and Standard Error of the Mean

Rather than show raw data, many scientists

present results as mean plus or minus the
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standard deviation (SD) or standard error (SEM).
This section helps you understand what these

values mean.

4.3.1 Key concepts: SD
What is the SD?

The standard deviation (SD) quantifies variability or scatter, and it is
expressed in the same units as your data.

How to interpret the SD when the data are Gaussian

If the data are sampled from a Gaussian distribution, then you expect
68% of the values to lie within one SD of the mean and 95% to lie within
two SD of the mean. This figure shows 250 values sampled from a
Gaussian distribution. The shaded area covers plus or minus one SD from
the mean, and includes about two-thirds of the values. The dotted lines
are drawn at the mean plus or minus two standard deviations, and about

95% of the values lie within those limits.

100

Value

25+
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The graph that follows shows the relationship between the standard
deviation and a Gaussian distribution. The area under a probability
distribution represents the entire population, so the area under a portion
of a probability distribution represents a fraction of the population. In the
graph on the left, the green (shaded) portion extends from one SD below
the mean to one SD above the mean. The green area is about 68% of the
total area, so a bit more than two thirds of the values are in the interval
mean plus or minus one SD. The graph on the right shows that about
95% of values lie within two standard deviations of the mean.

68% 95%

-150 +15D -25D +25D

How to interpret the SD when the data are not Gaussian

The figure below shows three sets of data, all with exactly the same mean
and SD. The sample on the left is approximately Gaussian. The other two
samples are far from Gaussian yet have precisely the same mean (100)
and standard deviation (35).
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2509 All have mean=100, SD=35

200+

150+

50+

o
L
_I
%
L
L

This graph points out that interpreting the mean and SD the usual way
can be misleading if you assume the data are Gaussian, but that
assumption isn't true.

The SD can still be interpreted without assuming a Gaussian distribution.
The Chebyshev theorem states that even if data are not sampled from a
Gaussian distribution:

e At least 75% of the values must lie within two standard deviations of
the mean

e At least 89% of the values must be within three standard deviations

How to report standard deviations

Many people report a mean and a standard deviation something like this:
"115+10 mmHg", with a footnote or statement in the Methods section
defining the second value as a standard deviation.

Some (1,2) say that because the standard deviation is a single value that

quantifies scatter, it should not follow a plus/minus symbol but instead
should appear like this: "115 mmHg (SD 10)".
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1. Curran-Everett D, Benos D. Guidelines for reporting statistics in
journals published by the American Physiological Society. AJP -
Gastrointestinal and Liver Physiology. 2004 Aug 1;287(2):G307.

2. Ludbrook J. The presentation of statistics in Clinical and Experimental
Pharmacology and Physiology. Clin Exp Pharmacol Physiol. 2008 Oct
1;35(10):1271-4; authorreply1274.

4.3.2 Computing the SD
How is the SD calculated?

1. Compute the square of the difference between each value and the
sample mean.

2. Add those values up.
3. Divide the sum by N-1. This is called the variance.

4. Take the square root to obtain the Standard Deviation.
Why n-1?

Why divide by n-1 rather than N in the third step above? In step 1, you
compute the difference between each value and the mean of those
values. You don't know the true mean of the population; all you know is
the mean of your sample. Except for the rare cases where the sample
mean happens to equal the population mean, the data will be closer to
the sample mean than it will be to the true population mean. So the value
you compute in step 2 will probably be a bit smaller (and can't be larger)
than what it would be if you used the true population mean in step 1. To
make up for this, we divide by n-1 rather than n.

But why n-1? If you knew the sample mean, and all but one of the values,
you could calculate what that last value must be. Statisticians say there
are n-1 degrees of freedom.

More about n vs. n-1.
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But I've seen equations with n, not n-1, in the denominator!

The n-1 equation is used in the common situation where you are
analyzing a sample of data and wish to make more general conclusions.
The SD computed this way (with N-1 in the denominator) is your best
guess for the value of the SD in the overall population.

If you simply want to quantify the variation in a particular set of data, and
don't plan to extrapolate to make wider conclusions, compute the SD
using N in the denominator. The resulting SD is the SD of those particular
values, but will most likely underestimate the SD of the population from
which those points were drawn.

The goal of science is always to generalize, so the equation with n in the
denominator should not be used when analyzing scientific data. The only
example I can think of where it might make sense to use n (not n-1) in
the denominator is in quantifying the variation among exam scores. But
much better would be to show a scatterplot of every score, or a frequency
distribution histogram.

Prism always computes the SD using n-1.
How many values do you need to compute a SD?

The SD quantifies scatter, so clearly you need more than one value! Is
two values enough? Many people believe it is not possible to compute a
SD from only two values. But that is wrong. The equation that calculates
the SD works just fine when you have only duplicate (n=2) data.

Are the results valid? There is no mathematical reason to think otherwise,
but I answered the question with simulations. I simulated ten thousand
data sets with n=2 and each data point randomly chosen from a Gaussian
distribution. Since all statistical tests are actually based on the variance
(the square of the SD), I compared the variance computed from the
duplicate values with the true variance. The average of the 10,000
variances of simulated data was within 1% of the true variance from
which the data were simulated. This means that the SD computed from
duplicate data is a valid assessment of the scatter in your data. It is
equally likely to be too high or too low, but is likely to be pretty far from
the true SDP".
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Calculating the SD with Excel

Excel can compute the SD from a range of values using the STDEV()
function. For example, if you want to know the standard deviation of the
values in cells B1 through B10, use this formula in Excel:

=STDEV(B1:B10)

That function computes the SD using n-1 in the denominator. If you want
to compute the SD using N in the denominator (see above) use Excel's
STDEVP() function.

Is the SD the same as the SEM?
No!™*
4.3.3 How accurately does a SD quantify scatter?
The SD of a sample is not the same as the SD of the population

It is straightforward to calculate the standard deviation from a sample of
values. But how accurate is the standard deviation? Just by chance you
may have happened to obtain data that are closely bunched together,
making the SD low. Or you may have happened to obtain data that are
far more scattered than the overall population, making the SD high. The
SD of your sample may not equal, or even be close to, the SD of the
population.

The 95% CI of the SD

You can express the precision of any computed value as a 95%
confidence interval (CI). It's not done often, but it is certainly possible to
compute a CI for a SD. We'll discuss confidence intervals more in the next
section® which explains the CI of a mean. Here we are discussing the CI
of a SD, which is quite different.

Interpreting the CI of the SD is straightforward. You must assume that
your data were randomly and independently®* sampled from a
Gaussian®” distribution. You compute the SD and its CI from that one
sample, and use it to make an inference about the SD of the entire
population. You can be 95% sure that the CI of the SD contains the true
overall standard deviation of the population.
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How wide is the CI of the SD? Of course the answer depends on sample
size (N), as shown in the table below.

10

25

50

100

500

1000

100

75

50

25

95% CI of SD

0.45*SD to 31.9*SD

0.52*SD to 6.29*SD

0.60*SD to 2.87*SD

0.69*SD to 1.83*SD

0.78*SD to 1.39*SD

0.84*SD to 1.25*SD

0.88*SD to 1.16*SD

0.94*SD to 1.07*SD

0.96*SD to 1.05*SD

SD=18.0
®, 95% Clof SD;

oo— 108t0517
@

The standard deviation computed from the five values shown in the graph
above is 18.0. But the true standard deviation of the population from
which the values were sampled might be quite different. Since N=5, the
95% confidence interval extends from 10.8 (0.60*18.0) to 51.7
(2.87*18.0). When you compute a SD from only five values, the upper
95% confidence limit for the SD is almost five times the lower limit.
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Most people are surprised that small samples define the SD so poorly.
Random sampling can have a huge impact with small data sets, resulting
in a calculated standard deviation quite far from the true population
standard deviation.

Note that the confidence intervals are not symmetrical. Why? Since the
SD is always a positive number, the lower confidence limit can't be less
than zero. This means that the upper confidence interval usually extends
further above the sample SD than the lower limit extends below the
sample SD. With small samples, this asymmetry is quite noticeable.

If you want to compute these confidence intervals yourself, use these
Excel equations (N is sample size; alpha is 0.05 for 95% confidence, 0.01
for 99% confidence, etc.):

Lower limit: =SD*SQRT((N-1)/ CHI I NV( (al pha/2), N-1))
Upper limit: =SD* SQRT((N-1) / CHI I NV(1- (al pha/ 2), N-1))
4.3.4 Key concepts: SEM
What is the SEM?
The standard error of the mean (SEM) quantifies the precision of the
mean. It is a measure of how far your sample mean is likely to be from

the true population mean. It is expressed in the same units as the data.

GraphPad Prism uses the abbreviation SEM, but some prefer (insist on)
the abbreviation SE (1, 2).

Is the SEM larger or smaller than the SD?

The SEM is always smaller than the SD. With large samples, the SEM is
much smaller than the SD.

How do you interpret the SEM?
Although scientists often present data as mean and SEM, interpreting
what the SEM means is not straightforward. It is much easier to interpret

the 95% confidence interval, which is calculated from the SEM.

With large samples (say greater than ten), you can use these rules-of-
thumb:
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The 67% confidence interval extends approximately one SEM in each
direction from the mean.

The 95% confidence interval extends approximately two SEMs from
the mean in each direction.

The multipliers are not actually 1.0 and 2.0, but rather are values that
come from the t distribution and depend on sample size. With small

samples, and certainly when N is less than ten, those rules of thumb are
not very accurate.

Is the SEM the same as the SD?
No!bs
Are all standard errors the standard error of a mean?

No. Statistical computations can compute a standard error for almost any
parameter computed from a sample of data. Prism can compute the
standard error of a slope in linear regression, and any parameter (i.e.
rate constants) from nonlinear regression. The abbreviation SE applies to
any standard error, including the standard error of the mean in many

journals. The abbreviation SEM always applies to the standard error of the
mean.
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4.3.5 Computing the SEM

How is the SEM calculated?

The SEM is calculated by dividing the SD by the square root of N. This

relationship is worth remembering, as it can help you interpret published
data.

If the SEM is presented, but you want to know the SD, multiply the SEM
by the square root of N.

Calculating the SEM with Excel

Excel does not have a function to compute the standard error of a mean.
It is easy enough to compute the SEM from the SD, using this formula.

=STDEV()/SQRT(COUNT())

For example, if you want to compute the SEM of values in cells B1
through B10, use this formula:

=STDEV(B1:B10)/SQRT(COUNT(B1:B10))
The COUNT() function counts the number of numbers in the range. If you
are not worried about missing values, you can just enter N directly. In
that case, the formula becomes:
=STDEV(B1:B10)/SQRT(10)
4.3.6 The SD and SEM are not the same

It is easy to be confused about the difference between the standard
deviation (SD) and the standard error of the mean (SEM). Here are the
key differences:

e The SD quantifies scatter — how much the values vary from one
another.

e The SEM quantifies how precisely you know the true mean of the

population. It takes into account both the value of the SD and the
sample size.

e Both SD and SEM are in the same units -- the units of the data.
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4.3.7

e The SEM, by definition, is always smaller than the SD.

e The SEM gets smaller as your samples get larger. This makes sense,
because the mean of a large sample is likely to be closer to the true
population mean than is the mean of a small sample. With a huge
sample, you'll know the value of the mean with a lot of precision even
if the data are very scattered.

e The SD does not change predictably as you acquire more data. The SD
you compute from a sample is the best possible estimate of the SD of
the overall population. As you collect more data, you'll assess the SD
of the population with more precision. But you can't predict whether
the SD from a larger sample will be bigger or smaller than the SD from
a small sample. (This is not strictly true. It is the variance -- the SD
squared -- that doesn't change predictably, but the change in SD is
trivial and much much smaller than the change in the SEM.)

Note that standard errors can be computed for almost any parameter you
compute from data, not just the mean. The phrase "the standard error" is
a bit ambiguous. The points above refer only to the standard error of the

mean.

Advice: When to plot SD vs. SEM

If you create a graph with error bars, or create a table with plus/minus
values, you need to decide whether to show the SD, the SEM, or
something else.

Often, there are better alternatives to graphing the mean with SD or
SEM.

If you want to show the variation in your data

If each value represents a different individual, you probably want to show
the variation among values. Even if each value represents a different lab
experiment, it often makes sense to show the variation.

If you are plotting a column graph fewer than 100 or so values per data
set, create a scatter plot that shows every value. What better way to
show the variation among values than to show every value? If your data
set has more than 100 or so values, a scatter plot becomes messy.
Alternatives are to show a box-and-whiskers plot, a frequency distribution
(histogram), or a cumulative frequency distribution.

© 1995-2020 GraphPad Software, LLC



PRINCIPLES OF STATISTICS 53

If you are plotting XY data, especially with multiple treatment groups,
plotting every replicate can lead to a messy graph. It can be a good first
step, so you see your data fully. But then change to mean and error bar
when presenting the data.

If you want to plot mean and error bar, the SD quantifies variability
among replicates. So does a graph of median with interquartile range or
full range. When plotting a graph with error bars, be sure to explain how
the error bars were computed in the figure itself or in its legend.

If you want to show how precisely you have determined the mean

If your goal is to compare means with a t test or ANOVA, or to show how
closely our data come to the predictions of a model, you may be more
interested in showing how precisely the data define the mean than in
showing the variability. In this case, the best approach is to plot the 95%
confidence interval of the mean (or perhaps a 90% or 99% confidence
interval).

What about the standard error of the mean (SEM)? Graphing the mean
with an SEM error bars is a commonly used method to show how well you
know the mean, The only advantage of SEM error bars are that they are
shorter, but SEM error bars are harder to interpret than a confidence
interval. Nonetheless, SEM error bars are the standard in many fields.

Whatever error bars you choose to show, be sure to state your choice.
Noticing whether or not the error bars overlap tells you less than you
might guess.

If you want to create persuasive propaganda

If your goal is to emphasize small and unimportant differences in your
data, show your error bars as SEM, and hope that your readers think
they are SD

If our goal is to cover-up large differences, show the error bars as the
standard deviations for the groups, and hope that your readers think they
are a standard errors.

This approach was advocated by Steve Simon in his excellent weblog. Of
course he meant it as a joke. If you don't understand the joke, review
the differences between SD and SEM.
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4.3.8 Alternatives to showing the SD or SEM
If you want to show the variation in your data

If each value represents a different individual, you probably want to show
the variation among values. Even if each value represents a different lab
experiment, it often makes sense to show the variation.

With fewer than 100 or so values, create a scatter plot that shows every
value. What better way to show the variation among values than to show
every value? If your data set has more than 100 or so values, a scatter
plot becomes messy. Alternatives are to show a box-and-whiskers plot, a
frequency distribution (histogram), or a cumulative frequency
distribution.

What about plotting mean and SD? The SD does quantify variability, so
this is indeed one way to graph variability. But a SD is only one value, so
is a pretty limited way to show variation. A graph showing mean and SD
error bar is less informative than any of the other alternatives, but takes
no less space and is no easier to interpret. I see no advantage to plotting
a mean and SD rather than a column scatter graph, box-and-wiskers plot,
or a frequency distribution.

Of course, if you do decide to show SD error bars, be sure to say so in the
figure legend so no one will think it is a SEM.

If you want to show how precisely you have determined the mean

If your goal is to compare means with a t test or ANOVA, or to show how
closely our data come to the predictions of a model, you may be more
interested in showing how precisely the data define the mean than in
showing the variability. In this case, the best approach is to plot the 95%
confidence interval of the mean (or perhaps a 90% or 99% confidence
interval).

What about the standard error of the mean (SEM)? Graphing the mean
with an SEM error bars is a commonly used method to show how well you
know the mean, The only advantage of SEM error bars are that they are
shorter, but SEM error bars are harder to interpret than a confidence
interval.

Whatever error bars you choose to show, be sure to state your choice.
Noticing whether or not the error bars overlap tells you less than you
might guess.”*
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4.4  Thelognormal distribution and geometric mean and SD

Lognormal distributions are very common in

biology but very rare in statistics books.
441 The lognormal distribution
Key facts about the lognormal distribution
e A Gaussian distribution emerges when variation is caused by multiple
sources of scatter which add together®*. In contrast, a lognormal

distribution emerges when variation is caused by multiple sources of
scatter which are multiplicative.

¢ All values in a lognormal distribution are positive. Negative values and
zeroes are not possible in a lognormal distribution.

e Lognormal distributions are common in biology.
e The lognormal distribution is asymmetrical. Lots of values are very

similar, while a small fraction of the values are much larger. You can see
this in the left panel of the graph below.
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e When plotted on a logarithmic axis, as shown on the right panel of the
graph above, the distribution is symmetrical.

e If you are not aware of lognormal distributions, you might be tempted
to remove the highest four values in the example above as outliers,
since they look like they are not part of the overall distribution. If you
run the values through an outlier detection algorithm that assumes
sampling from a Gaussian distribution, outliers will probably be
identified (the highest four values in the example above.

e If you try to compare means with a t test or ANOVA, you are likely to
find that the P value is high and the confidence intervals are wide. T
tests and ANOVA assume that the values were sampled from a
Gaussian distribution. You will lose power if you try to use those
methods to compare means of data set sampled from a lognormal
distribution.

e The logarithm of all the values from a lognormal distribution is
Gaussian.

How to cope with lognormal distributions

Analyzing data from a lognormal distribution is easy. Simply transform
the data by taking the logarithm of each value. These logarithms are
expected to have a Gaussian distribution, so can be analyzed by t tests,
ANOVA, etc.

4.4.2 The geometric mean and geometric SD factor
Key facts about the geometric mean

e Prism computes the geometric mean by computing the logarithm of all
values, then calculating the mean of the logarithms, and finally taking
the antilog.

e Prism uses base 10 (common) logarithms, and then takes ten to the
power of the mean of the logarithms to get the geometric mean. Some
programs use natural logs and then use the exponential function to
convert back.
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e Using logarithms and antilogarithms is equivalent to multiplying all the
values together and taking that product to the 1/n power, where n is
the number of values. You'll see this definition in some books.

e The geometric mean cannot be computed if any values are zero or
negative.

e The geometric mean is in the same units as the data and the
arithmetic mean.

e The geometric mean is never larger than the arithmetic mean.
e If the data are sampled from a lognormal distribution®*, the geometric

mean is probably the best way to express the center of the
distribution.

Geometric SD factor

Prism (introduced in Prism 7) reports a Geometric SD factor when you
request a geometric mean. It also can plot the geometric mean and its
geometric SD factor on some graphs.

Key facts about the geometric SD factor:

e The term geometric SD is not commonly used. It was introduced by
Kirkwood (1).

e How the geometric SD is computed: First, transform all the values to
logarithms, compute the sample SD of those log values, and then take
the antilogarithm of that SD.

e The geometric SD factor has no units. It is a unitless ratio.

e You can't add the geometric SD to the geometric mean (or any other
value), and makes equally no sense to ever subtract the geometric SD
from the geometric mean. The geometric SD is a value you always
multiply or divide by. This is very different than a ordinary SD which
has the same units as the data, so can be added to or subtracted from
the mean.

e The range from (the geometric mean divided by the geometric SD
factor) to (the geometric mean multiplied by the geometric SD factor)
will contain about two thirds of the values if the data are sampled from
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a lognormal distribution. Similarly, the range from (the mean minus
the SD) to (the mean plus the SD) will contain about two thirds of the
values when data are sampled from a Gaussian distribution.

e It is rare to see publications show the geometric SD. It is common to
see a result reported as "The mean is 3.2 £ 1.2 (SD)". However it is
currently rare to report that the geometric mean is 4.3 *+ 1.14.

Instead of a "plus or minus" symbol, I entered a "times or divided by"
symbols.

e While it seems odd to express an error as "multiplied or divided by", it
is really no stranger than "plus or minus".

Example

Mean ——

Geo. Mean ey —

The graph above plots 20 values sampled from a loghormal distribution.
The graph on the left shows you that the mean and geometrical mean are
very different. The middle graph plots the geometric mean with error bars
computed as the geometric mean times or divided by the geometric SD
factor. The graph shows the same thing with a logarithmic Y axis. Now
the distribution looks symmetrical, and the error bars seem to extend the
same distance in each direction. But the ends of the error bars are at the
same Y value in the middle and right graph. The right graph uses a
logarithmic axis.

Reference

1. Kirkwood, TBL (1979). "Geometric means and measures of
dispersion". Biometrics 35: 908-9.
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4.5 Confidence intervals

How sure are you? That is a fundamental question
when analyzing data, and confidence intervals are

the way to answer it.

45.1 Key concepts: Confidence interval of a mean
What is the confidence interval of a mean?

The confidence interval (CI) of a mean tells you how precisely you have
determined the mean.

For example, you measure weight in a small sample (N=5), and compute
the mean. That mean is very unlikely to equal the population mean. The
size of the likely discrepancy depends on the size and variability of the
sample.

If your sample is small and variable, the sample mean is likely to be quite
far from the population mean. If your sample is large and has little
scatter, the sample mean will probably be very close to the population
mean. Statistical calculations combine sample size and variability
(standard deviation) to generate a CI for the population mean. As its
name suggests, the CI is a range of values.

What assumptions are made in interpreting a CI of a mean?

To interpret the confidence interval of the mean, you must assume that
all the values were independently® and randomly sampled from a
population whose values are distributed according to a Gaussian®”
distribution. If you accept those assumptions, there is a 95% chance that
the 95% CI contains the true population mean. In other words, if you
generate many 95% CIs from many samples, you can expect the 95% CI
to include the true population mean in 95% of the cases, and not to
include the population mean value in the other 5%.
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How is it possible that the CI of a mean does not include the true mean

The upper panel below shows ten sets of data (N=5), randomly drawn
from a Gaussian distribution with a mean of 100 and a standard deviation
of 35. The lower panel shows the 95% CI of the mean for each sample.
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Because these are simulated data, we know the exact value of the true
population mean (100), so can ask whether or not each confidence
interval includes that true population mean. In the data set second from
the right in the graphs above, the 95% confidence interval does not
include the true mean of 100 (dotted line).

When analyzing data, you don't know the population mean, so can't know
whether a particular confidence interval contains the true population
mean or not. All you know is that there is a 95% chance that the
confidence interval includes the population mean, and a 5% chance that it
does not.
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How is the confidence interval of a mean computed?

The confidence interval of a mean is centered on the sample mean, and
extends symmetrically in both directions. That distance equals the SE of
the mean times a constant from the t distribution. The value of that
constant depends only on sample size (N) as shown below.

N Multiplier
2 12.706
3 4.303
5 2.776
10 2.262
25 2.064
50 2.010
100 1.984
500 1.965

N =TINV(0.05,N-1)

The samples shown in the graph above had five values. So the lower
confidence limit from one of those samples is computed as the mean
minus 2.776 times the SEM, and the upper confidence limit is computed
as the mean plus 2.776 times the SEM.

The last line in the table above shows you the equation to use to compute
the multiplier in Excel. The newer syntax is =T.INV.2T(0.005, N-1).

A common rule-of-thumb is that the 95% confidence interval is computed
from the mean plus or minus two SEMs. With large samples, that rule is
very accurate. With small samples, the CI of a mean is much wider than
suggested by that rule-of-thumb.
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4.5.2 Interpreting a confidence interval of a mean
A confidence interval does not quantify variability

A 95% confidence interval is a range of values that you can be 95%
certain contains the true mean of the population. This is not the same as
a range that contains 95% of the values. The graph below emphasizes
this distinction.
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The graph shows three samples (of different size) all sampled from the
same population.

With the small sample on the left, the 95% confidence interval is similar
to the range of the data. But only a tiny fraction of the values in the large
sample on the right lie within the confidence interval. This makes sense.
The 95% confidence interval defines a range of values that you can be
95% certain contains the population mean. With large samples, you know
that mean with much more precision than you do with a small sample, so
the confidence interval is quite narrow when computed from a large

sample.
. ~ Don't view a confidence interval and
_[\,‘;('.'— misinterpret it as the range that contains 95%
~ of the values.
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A 959% chance of what?

It is correct to say that there is a 95% chance that the confidence interval
you calculated contains the true population mean. It is not quite correct
to say that there is a 95% chance that the population mean lies within the
interval.

What's the difference?

The population mean has one value. You don't know what it is (unless you
are doing simulations) but it has one value. If you repeated the
experiment, that value wouldn't change (and you still wouldn't know what
it is). Therefore it isn't strictly correct to ask about the probability that
the population mean lies within a certain range.

In contrast, the confidence interval you compute depends on the data you
happened to collect. If you repeated the experiment, your confidence
interval would almost certainly be different. So it is OK to ask about the
probability that the interval contains the population mean.

It is not quite correct to ask about the probability that the population
mean is within the interval. It either is in the interval or it isn't. There is
no chance about it. What you can say is that if you perform this kind of
experiment many times, the confidence intervals would not all be the
same, you would expect 95% of them to contain the population mean,
you would expect 5% of the confidence intervals to not include the
population mean, and you would never know whether the interval from a
particular experiment contained the population mean or not.

Nothing special about 95%

While confidence intervals are usually expressed with 95% confidence,
this is just a tradition. Confidence intervals can be computed for any
desired degree of confidence.

People are often surprised to learn that 99% confidence intervals are
wider than 95% intervals, and 90% intervals are narrower. But this
makes perfect sense. If you want more confidence that an interval
contains the true parameter, then the intervals will be wider. If you want
to be 100.000% sure that an interval contains the true population, it has
to contain every possible value so be very wide. If you are willing to be
only 50% sure that an interval contains the true value, then it can be
much narrower.
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45.3 Other confidence intervals

The concept of confidence intervals is general. You can calculate the 95%
CI for almost any value you compute when you analyze data. We've
already discussed the CI of a SD". Other confidence intervals computed
by Prism include:

e The difference between two group means

e A proportion

e The ratio of two proportions

e The best-fit slope of linear regression

e The best-fit value of an EC50 determined by nonlinear regression

e The ratio of the median survival times of two groups

e The median of a set of values.
The concept is the same for all these cases. You collected data from a
small sample and analyzed the data. The values you compute are 100%
correct for that sample, but are affected by random scatter. A confidence
interval tells you how precisely you have determined that value. Given
certain assumptions (which we list with each analysis later in this book),
you can be 95% sure that the 95% CI contains the true (population)
value.
The fundamental idea of statistics is to analyze a sample of data, and
make quantitative inferences about the population from which the data

were sampled. Confidence intervals are the most straightforward way to
do this.

4.5.4 Advice: Emphasize confidence intervals over P values

Many statistical analyses generate both P values and confidence intervals.
Many scientists report the P value and ignore the confidence interval.

I think this is a mistake.

Interpreting P values is tricky®". Interpreting confidence intervals, in
contrast, is quite simple. You collect some data, do some calculations to
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quantify a difference (or ratio, or best-fit value...), and report that value
along with a confidence interval to show how precise that value is.

The underlying theory is identical for confidence intervals and P values.
So if both are interpreted correctly, the conclusions are identical. But that
is a big 'if'", and I agree with the following quote (JM Hoenig and DM
Heisey, The American Statistician, 55: 1-6, 2001):

"... imperfectly understood confidence intervals are more useful and
less dangerous than incorrectly understood P values and hypothesis
tests."

455 One sided confidence intervals

Typically, confidence intervals are expressed as a two-sided range. You
might state, for example, with 95% confidence, that the true value of a
parameter such as mean, EC50, relative risk, difference, etc., lies in a
range between two values. We call this interval “two sided” because it is
bounded by both lower and upper confidence limits.

In some circumstances, it can make more sense to express the
confidence interval in only one direction - to either the lower or upper
confidence limit. This can best be illustrated by following an example.

A recent study was performed to evaluate the effectiveness of a new drug
in the eradication of Heliobacter pylori infection, and to determine
whether or not it was inferior to the standard drug. (This example was
adapted from one presented in reference 1). The eradication rate for the
new drug was 86.5% (109/126) compared with 85.3% (110/129) for
patients treated with the standard therapy.

In this study, the difference between the eradication rates of the two
treatments was 1.2%. The 95% confidence interval extends at the lower
limit for the new drug from an eradication rate of 7.3% worse than
standard drug, to the upper limit with an eradication rate of 9.7% better.

If we assume that the subjects of the study are representative of a larger
population, this means there is a 95% chance that this range of values
includes the true difference of the eradication rates of the two drugs.
Splitting the remaining 5%, there is an additional 2.5% chance that the
new treatment increases the eradication rate by more than 9.7%, and a
2.5% chance that the new treatment decreases the eradication rate by
more than 7.3%.
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In this case, our goal is to show that the new drug is not worse than the
old one. So we can combine our 95% confidence level with the 2.5%
upper limit, and say that there is a 97.5% chance that the eradication
rate with the new drug is no more than 7.3% worse than the eradication
rate with standard drug.

It is conventional, however, to state confidence intervals with 95%, not
97.5%, confidence. We can easily create a one-sided 95% confidence
interval. To do this, we simply compute a 90% two-sided confidence
interval instead of 95%.

The 90% CI for difference in eradication rate extends from -5.9% to
8.4%. Since we are less confident that it includes the true value, it
doesn't extend as far as 95% interval. We can restate this to say that the
95% confidence interval is greater than -5.9%. Thus, we are 95% sure
that the new drug has an eradication rate not more than 5.9% worse than
that of the standard drug.

In this example of testing noninferiority, it makes sense to express a one-
sided confidence interval as the lower limit only. In other situations, it can
make sense to express a one-sided confidence limit as an upper limit
only. For example, in toxicology you may care only about the upper
confidence limit.

GraphPad Prism does not compute one-sided confidence intervals directly.
But, as the example shows, it is easy to create the one-sided intervals
yourself. Simply ask Prism to create a 90% confidence interval for the
value you care about. If you only care about the lower limit, say that you
are 95% sure the true value is higher than that (90%) lower limit. If you
only care about the upper limit, say that you are 95% sure the true value
is lower than the (90%) upper limit.

Reference | [ | | | | | | |

1. S. J. Pocock, The pros and cons of noninferiority trials, Fundamental &
Clinical Pharmacology, 17: 483-490 (2003).

Compare confidence intervals, prediction intervals, and tolerance intervals

When you fit a parameter to a model, the accuracy or precision can be
expressed as a confidence interval, a prediction interval or a tolerance
interval. The three are quite distinct. Prism only reports confidence
intervals.
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The discussion below explains the three different intervals for the simple
case of fitting a mean to a sample of data (assuming sampling from a
Gaussian distribution). The same ideas can be applied to intervals for any
best-fit parameter determined by regression.

Confidence interval

Confidence intervals tell you about how well you have determined the
mean. Assume that the data really are randomly sampled from a Gaussian
distribution. If you do this many times, and calculate a confidence interval
of the mean from each sample, you'd expect about 95 % of those intervals
to include the true value of the population mean. The key point is that the
confidence interval tells you about the likely location of the true population
parameter.

Prediction interval

Prediction intervals tell you where you can expect to see the next data
point sampled. Assume that the data really are randomly sampled from a
Gaussian distribution. Collect a sample of data and calculate a prediction
interval. Then sample one more value from the population. If you do this
many times, you'd expect that next value to lie within that prediction
interval in 95% of the samples.The key point is that the prediction interval
tells you about the distribution of values, not the uncertainty in
determining the population mean.

Prediction intervals must account for both the uncertainty in knowing the
value of the population mean, plus data scatter. So a prediction interval is
always wider than a confidence interval.

Before moving on to tolerance intervals, let's define that word 'expect'
used in defining a prediction interval. It means there is a 50% chance that
you'd see the value within the interval in more than 95% of the samples,
and a 50% chance that you'd see the value within the interval in less than
95% of the samples.

Tolerance interval

What if you want to be 95% sure that the interval contains 95% of the
values? Or 90% sure that the interval contains 99% of the values? Those
latter questions are answered by a tolerance interval. To compute, or
understand, a tolerance interval you have to specify two different
percentages. One expresses how sure you want to be, and the other
expresses what fraction of the values the interval will contain. If you set
the first value (how sure) to 50%, then a tolerance interval is the same as
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4.5.7

a prediction interval. If you set it to a higher value (say 90% or 99%) then
the tolerance interval is wider.

Confidence interval of a standard deviation

A confidence interval can be computed for almost any value computed
from a sample of data, including the standard deviation.

The SD of a sample is not the same as the SD of the population

It is straightforward to calculate the standard deviation from a sample of
values. But how accurate is that standard deviation? Just by chance you
may have happened to obtain data that are closely bunched together,
making the SD low. Or you may have randomly obtained values that are
far more scattered than the overall population, making the SD high. The
SD of your sample does not equal, and may be quite far from, the SD of
the population.

Confidence intervals are not just for means

Confidence intervals are most often computed for a mean. But the idea of
a confidence interval is very general, and you can express the precision of
any computed value as a 95% confidence interval (CI). Another example
is a confidence interval of a best-fit value from regression, for example a
confidence interval of a slope.

The 95% CI of the SD

The sample SD is just a value you compute from a sample of data. It's
not done often, but it is certainly possible to compute a CI for a SD.
GraphPad Prism does not do this calculation, but a free GraphPad

QuickCalc does.

Interpreting the CI of the SD is straightforward. If you assume that your
data were randomly and independently sampled from a Gaussian
distribution, you can be 95% sure that the CI contains the true
population SD.

How wide is the CI of the SD? Of course the answer depends on sample
size (n). With small samples, the interval is quite wide as shown in the
table below.

n 959% CI of SD
2 0.45*SD to 31.9*SD
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0.52*SD to 6.29*SD

0.60*SD to 2.87*SD
10 0.69*SD to 1.83*SD
25 0.78*SD to 1.39*SD
50 0.84*SD to 1.25*SD
100 0.88*SD to 1.16*SD
500 0.94*SD to 1.07*SD
1000 0.96*SD to 1.05*SD

Example

Data: 23, 31, 25, 30, 27
Mean: 27.2

SD: 3.35

The sample standard deviation computed from the five values is 3.35.
But the true standard deviation of the population from which the values
were sampled might be quite different. From the n=5 row of the table,
the 95% confidence interval extends from 0.60 times the SD to 2.87
times the SD. Thus the 95% confidence interval ranges from 0.60*3.35
to 2.87*%3.35, from 2.01 to 9.62. When you compute a SD from only five
values, the upper 95% confidence limit for the SD is almost five times the
lower limit.

Most people are surprised that small samples define the SD so poorly.
Random sampling can have a huge impact with small data sets, resulting
in a calculated standard deviation quite far from the true population
standard deviation.

Note that the confidence interval is not symmetrical around the computed
SD. Why? Since the SD is always a positive number, the lower confidence
limit can't be less than zero. This means that the upper confidence
interval usually extends further above the sample SD than the lower limit
extends below the sample SD. With small samples, this asymmetry is
quite noticeable.

Computing the Ci of a SD with Excel
These Excel equations compute the confidence interval of a SD. n is

sample size; alpha is 0.05 for 95% confidence, 0.01 for 99% confidence,
etc.:
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Lower limit: =SD*SQRT((n-1)/CHIINV((alpha/2), n-1))
Upper limit: =SD*SQRT((n-1)/CHIINV(1-(alpha/2), n-1))
These equations come from page 197-198 of Sheskin (reference below).

Reference

David J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fourth Edition, IBSN:1584888148.

4.6 P Values

Almost every statistical tests generates a P value
(or several). Yet many scientists don't really
understand what P values are. This section
explains the principles, and also the difference

between one- and two-tail P values.

46.1 Whatis aPvalue?

Suppose that you've collected data from two samples of animals treated
with different drugs. You've measured an enzyme in each animal's
plasma, and the means are different. You want to know whether that
difference is due to an effect of the drug - whether the two populations
have different means.

Observing different sample means is not enough to persuade you to
conclude that the populations have different means. It is possible that the
populations have the same mean (i.e., that the drugs have no effect on
the enzyme you are measuring) and that the difference you observed
between sample means occurred only by chance. There is no way you can
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ever be sure if the difference you observed reflects a true difference or if
it simply occurred in the course of random sampling. All you can do is
calculate probabilities.

The first step is to state the null hypothesis, that really the treatment
does not affect the outcome you are measuring (so all differences are due
to random sampling).

The P value is a probability, with a value ranging from zero to one, that
answers this question (which you probably never thought to ask):

In an experiment of this size, if the populations really have the same
mean, what is the probability of observing at least as large a
difference between sample means as was, in fact, observed?

4.6.2 The most common misinterpretation of a P value

Many people misunderstand what a P value means. Let's assume that you
compared two means and obtained a P value equal to 0.03.

Correct definitions of this P value:

There is a 3% chance of observing a difference as large as you observed even if
the two population means are identical (the null hypothesis is true).

or

Random sampling from identical populations would lead to a difference smaller
than you observed in 97% of experiments, and larger than you observed in 3% of
experiments.

Wrong:

This latter statement is a common mistake. If you have a hard time
understanding the difference between the correct and incorrect
definitions, read this Bayesian perspectivel” .

4.6.3 More misunderstandings of P values

Kline (1) lists commonly believed fallacies about P values, which I
summarize here:
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Fallacy: P value is the probability that the result was due to sampling
error

The P value is computed assuming the null hypothesis is true. In other
words, the P value is computed based on the assumption that the
difference was due to sampling error. Therefore the P value cannot tell you
the probability that the result is due to sampling error.

Fallacy: The P value Is the probability that the null hypothesis is true

Nope. The P value is computed assuming that the null hypothesis is true,
so cannot be the probability that it is true.

Fallacy: 1-P is the probability that the alternative hypothesis is true

If the P value is 0.03, it is very tempting to think: If there is only a 3%
probability that my difference would have been caused by random
chance, then there must be a 97% probability that it was caused by a real
difference. But this is wrong!

What you can say is that if the null hypothesis were true, then 97% of
experiments would lead to a difference smaller than the one you
observed, and 3% of experiments would lead to a difference as large or
larger than the one you observed.

Calculation of a P value is predicated on the assumption that the null
hypothesis is correct. P values cannot tell you whether this assumption is
correct. P value tells you how rarely you would observe a difference as
larger or larger than the one you observed if the null hypothesis were
true.

The question that the scientist must answer is whether the result is so
unlikely that the null hypothesis should be discarded.

Fallacy: 1-P is the probability that the results will hold up when the
experiment is repeated

If the P value is 0.03, it is tempting to think that this means there is a
97% chance of getting ‘similar’ results on a repeated experiment. Not so.

Fallacy: A high P value proves that the null hypothesis is true.

No. A high P value means that if the null hypothesis were true, it would
not be surprising to observe the treatment effect seen in this experiment.
But that does not prove the null hypothesis is true.
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4.6.4

Fallacy: The P value is the probability of rejecting the null hypothesis

You reject the null hypothesis (and deem the results statistically
significant) when a P value from a particular experiment is less than the
significance level a, which you (should have) set as part of the
experimental design. So if the null hypothesis is true, a is the probability
of rejecting the null hypothesis.

The P value and a are not the same. A P value is computed from each
comparison, and is a measure of the strength of evidence. The significance
level a is set once as part of the experimental design.

1. RB Kline, Beyond Significance Testing: Reforming Data Analysis
Methods in Behavioral Research, 2004, IBSN:1591471184

How reproducible are P values? (not very)
P values are much less reproducible than you probably would guess.

If the null hypothesis is true, then the distribution of P values is uniform.
Half the P values will be less than 0.50, 5% will be less than 0.05, etc.

But what if the null hypothesis is false? Most people would expect the P
values to be fairly reproducible in that case. Not so.

To demonstrate this, I ran some simulations using GraphPad Prism. I
sampled from two Gaussian populations with the SD equal to 5.0. The two
populations means differed by 5.0. Here are four simulated experiments.
Only random sampling separates the four experiments. The four P values
vary considerably.
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And here is the distribution of P values from 2,500 such simulated
experiments. The X axis plots various values of P values. The Y axis
shows how frequently that range of values occurred in the 2500 simulated
experiments.

P =0.05
300

200

100

Number of experiments

0 —}
0.00001 0.0001 0.001 0.01 0.1 1

Leaving out the 2.5% highest and lowest P values, the middle 95% of the
P values range from 0.0001517 to 0.6869—a range covering more than
three orders of magnitude!

In these simulations, the median P value was about 0.05. I also ran
simulations with a smaller SD which of course resulted in smaller P
values, but the range still covered more than three orders of magnitude.
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The idea for these simulations came from Boos and Stefanski (1) who
demonstrated via simulations of a number of situations that P values from
repeated simulated experiments vary over more than three orders of
magnitude.

Cumming (2) asked if the P value from one particular experiment equals
0.05, what the P value from a repeat experiment is likely to be (taking
into account only random sampling and assuming there are no glitches
with either experiment). Surprisingly, the results don’t depend on sample
size. Of course, there is a 50% chance that the repeat P value will be
greater than 0.05. But it is surprising (I think) that there is a 20% chance
that the P value from a repeat experiment will be greater than 0.38 and a
5% chance it will be greater than 0.82.

There are many reasons to not rely on P values®”” when analyzing data.
This page shows that beyond any conceptual reasons for avoiding P
values is a very practical reason: P values are not very reproducible.

The figures above are Figure 15.1 from the third edition of Intuitive
Biostatistics.

1. Boos, D. D. & Stefanski, L. A. P-Value Precision and Reproducibility.
The American Statistician 65, 213-221 (2011).

2. Cumming, G. Replication and p Intervals: p Values Predict the Future
Only Vaguely, but Confidence Intervals Do Much Better. Perspectives on
Psychological Science 3, 286-300 (2008).

4.6.5 One-tail vs. two-tail P values

When comparing two groups, you must distinguish between one- and
two-tail P values. Some books refer to one-sided and two-sided P values,
which mean the same thing.

What does one-tail mean?

It is easiest to understand the distinction in context. So let’s imagine that
you are comparing the mean of two groups (with an unpaired t test). Both
one- and two-tail P values are based on the same null hypothesis, that
two populations really are the same and that an observed discrepancy
between sample means is due to chance.
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A two-tailed P value answers this question:

Assuming the null hypothesis is true, what is the chance that randomly
selected samples would have means as far apart as (or further than)
you observed in this experiment with either group having the larger
mean?

To interpret a one-tail P value, you must predict which group will have the
larger mean before collecting any data. The one-tail P value answers this
question:

Assuming the null hypothesis is true, what is the chance that randomly
selected samples would have means as far apart as (or further than)
observed in this experiment with the specified group having the larger
mean?

If the observed difference went in the direction predicted by the
experimental hypothesis, the one-tailed P value is half the two-tailed P
value (with most, but not quite all, statistical tests).

When is it appropriate to use a one-tail P value?

A one-tailed test is appropriate when previous data, physical limitations,
or common sense tells you that the difference, if any, can only go in one
direction. You should only choose a one-tail P value when both of the
following are true.

e You predicted which group will have the larger mean (or proportion)
before you collected any data. If you only made the "prediction" after
seeing the data, don't even think about using a one-tail P value.

¢ If the other group had ended up with the larger mean - even if it is
quite a bit larger — you would have attributed that difference to chance
and called the difference 'not statistically significant'.

Here is an example in which you might appropriately choose a one-tailed
P value: You are testing whether a new antibiotic impairs renal function,
as measured by serum creatinine. Many antibiotics poison kidney cells,
resulting in reduced glomerular filtration and increased serum creatinine.
As far as I know, no antibiotic is known to decrease serum creatinine, and
it is hard to imagine a mechanism by which an antibiotic would increase
the glomerular filtration rate. Before collecting any data, you can state
that there are two possibilities: Either the drug will not change the mean
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serum creatinine of the population, or it will increase the mean serum
creatinine in the population. You consider it impossible that the drug will
truly decrease mean serum creatinine of the population and plan to
attribute any observed decrease to random sampling. Accordingly, it
makes sense to calculate a one-tailed P value. In this example, a two-
tailed P value tests the null hypothesis that the drug does not alter the
creatinine level; a one-tailed P value tests the null hypothesis that the
drug does not increase the creatinine level.

The issue in choosing between one- and two-tailed P values is not
whether or not you expect a difference to exist. If you already knew
whether or not there was a difference, there is no reason to collect the
data. Rather, the issue is whether the direction of a difference (if there is
one) can only go one way. You should only use a one-tailed P value when
you can state with certainty (and before collecting any data) that in the
overall populations there either is no difference or there is a difference in
a specified direction. If your data end up showing a difference in the
“wrong” direction, you should be willing to attribute that difference to
random sampling without even considering the notion that the measured
difference might reflect a true difference in the overall populations. If a
difference in the “wrong” direction would intrigue you (even a little), you
should calculate a two-tailed P value.

How Prism reports one-tail P values

When you ask Prism to report a one-tail P value, it assumes the actual
difference or effect went in the direction you predicted, so the one-sided P
value reported by Prism is always smaller (almost always, exactly half of)
the two-tail P value.

If, in fact, the observed difference or effect goes in the opposite direction
to what you predicted, the one-sided P value reported by Prism is wrong.
The actual one-tail P value will equal 1.0 minus the reported one. For
example, if the reported one-tail P value is 0.04 and the actual difference
is in the opposite direction to what you predicted, then the actual one-
sided P value is 0.96.

What if you didn't predict the direction of the difference or effect before
collecting data?

If you didn't predict the direction of the effect before collecting data, you
should not be reporting one-sided P values. It is cheating to say "well, I
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would have predicted...". If you didn't record the prediction, then you
should not use a one-sided P value.

What if there are not two directions to the test?

The concept of one- and two-tail P values only makes sense for
hypotheses where there are two directions to the effect, an increase or a
decrease. If you are comparing three or more groups (ANOVA), then the
concept of one- and two-tail P value makes no sense, and Prism doesn't
ask you to make this choice.

How to convert between one- and two-tail P values

If the actual effect went in the direction you predicted:

e The one-tail P value is half the two-tail P value.

e The two-tail P value is twice the one-tail P value (assuming you
correctly predicted the direction of the difference).

This rule works perfectly for almost all statistical tests. Some tests
(Fisher's test) are not symmetrical, so these rules are only approximate
for these tests.

If the actual effect went in the opposite direction to what you predicted:

e The one-tail P value equals 1.0 minus half the two-tail P value.

46.6 Advice: Use two-tailed P values
If in doubt, choose a two-tail P value. Why?

e The relationship between P values and confidence intervals is easier to
understand with two-tail P values.

e Some tests compare three or more groups, which makes the concept
of tails inappropriate (more precisely, the P values have many tails). A
two-tail P value is more consistent with the P values reported by these
tests.
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e Choosing a one-tail P value can pose a dilemma. What would you do if
you chose to use a one-tail P value, observed a large difference
between means, but the “wrong” group had the larger mean? In other
words, the observed difference was in the opposite direction to your
experimental hypothesis. To be rigorous, you must conclude that the
difference is due to chance, even if the difference is huge. While
tempting, it is not fair to switch to a two-tail P value or to reverse the
direction of the experimental hypothesis. You avoid this situation by
always using two-tail P value.

4.6.7 Advice: How to interpret a small P value
Before you interpret the P value
Before thinking about P values, you should:

e Review the science. If the study was not designed well, then the
results probably won't be informative. It doesn't matter what the P
value is.

e Review the assumptions of the analysis you chose to make sure you
haven't violated any assumptions. We provide an analysis checklist
for every analysis that Prism does. If you've violated the
assumptions, the P value may not be meaningful.

Interpreting a small P value

A small P value means that the difference (correlation, association,...)
you observed would happen rarely due to random sampling. There are
three possibilities:

e The null hypothesis of no difference is true, and a rare coincidence
has occurred. You may have just happened to get large values in one
group and small values in the other, and the difference is entirely
due to chance. How likely is this? The answer to that question,
surprisingly, is not the P value. Rather, the answer depends on the
scientific background of the experiment.B”

e The null hypothesis is false. There truly is a difference (or
correlation, or association...) that is large enough to be scientifically
interesting.
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e The null hypothesis is false. There truly is a difference (or
correlation, or association...), but that difference is so small that it is
scientifically boring. The difference is real, but trivial.

Deciding between the last two possibilities is a matter of scientific
judgment, and no statistical calculations will help you decide.

Using the confidence interval to interpret a small P value

If the P value is less than 0.05, then the 95% confidence interval will not
contain zero (when comparing two means). To interpret the confidence
interval in a scientific context, look at both ends of the confidence interval
and ask whether they represent a difference between means that you
consider to be scientifically important or scientifically trivial. This section
assumes you are comparing two means with a t test, but it is
straightforward to use these same ideas in other contexts.

There are three cases to consider:

e The confidence interval only contains differences that are
trivial. Although you can be 95% sure that the true difference is not
zero, you can also be 95% sure that the true difference between
means is tiny and uninteresting. The treatment had an effect, but a
small one.

e The confidence interval only includes differences you would
consider to be important. Since even the low end of the confidence
interval represents a difference large enough that you consider it to be
scientifically important, you can conclude that there is a difference
between treatment means and that the difference is large enough to
be scientifically relevant.

e The confidence interval ranges from a trivial to an important
difference. Since the confidence interval ranges from a difference
that you think would be scientifically trivial to one you think would be
important, you can't reach a strong conclusion. You can be 95% sure
that the true difference is not zero, but you cannot conclude whether
the size of that difference is scientifically trivial or important.
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4.6.8

Advice: How to interpret a large P value
Before you interpret the P value
Before thinking about P values, you should:

e Assess the science. If the study was not designed well, then the
results probably won't be informative. It doesn't matter what the P
value is.

e Review the assumptions of the analysis you chose to make sure you
haven't violated any assumptions. We provide an analysis checklist for
every analysis that Prism does. If you've violated the assumptions, the P
value may not be meaningful.

Interpreting a large P value

If the P value is large, the data do not give you any reason to conclude
that the overall means differ. Even if the true means were equal, you
would not be surprised to find means this far apart just by chance. This is
not the same as saying that the true means are the same. You just don't
have convincing evidence that they differ.

Using the confidence interval to interpret a large P value

How large could the true difference really be? Because of random
variation, the difference between the group means in this experiment is
unlikely to be equal to the true difference between population means.
There is no way to know what that true difference is. The uncertainty is
expressed as a 95% confidence interval. You can be 95% sure that this
interval contains the true difference between the two means. When the P
value is larger than 0.05, the 95% confidence interval will start with a
negative number (representing a decrease) and go up to a positive
number (representing an increase).

To interpret the results in a scientific context, look at both ends of the
confidence interval and ask whether they represent a difference that
would be scientifically important or scientifically trivial. There are two
cases to consider:

e The confidence interval ranges from a decrease that you would
consider to be trivial to an increase that you also consider to be
trivial. Your conclusions is pretty solid. Either the treatment has no
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4.6.9

effect, or its effect is so small that it is considered unimportant. This is
an informative negative experiment.

e One or both ends of the confidence interval include changes
you would consider to be scientifically important. You cannot
make a strong conclusion. With 95% confidence you can say that
either the difference is zero, not zero but is scientifically trivial, or
large enough to be scientifically important. In other words, your data
really don't lead to any solid conclusions.

Decimal formatting of P values

Every analysis that reports P values lets you choose the decimal format
used to report P values. Each analysis that computes P values gives you
these choices:

e APA (American Psychological Association) style, which shows three
digits but omits the leading zero (.123). P values less than 0.001 shown
as "< .001". All P values less than 0.001 are summarized with three
asterisks, with no possibility of four asterisks.

e NEJM (New England Journal of Medicine) style, which shows three digits
and includes the leading zero (0.123). P values less than 0.001 shown
as "< .001". All P values less than 0.001 are summarized with three
asterisks, with no possibility of four asterisks.

e GraphPad style which reports four digits after the decimal point with a
leading zero (0.1234). P values less than 0.0001 shown as "< .0001". P
values less than 0.001 are summarized with three asterisks, and P
values less than 0.0001 are summarized with four asterisks.

e Choose how many digits you want to see after the decimal point, up to
15. P values less than 0.001 are given three asterisks, and P values less
than 0.0001 are given four asterisks. You'll choose this option in each
analysis individually. But if you do choose this option, the exact
appearance of the P value (decimals or scientific notation) will depend
on a setting in the Analysis tab of the Prism preferences dialog. This is
where you can also set the default number of digits after the decimal.

© 1995-2020 GraphPad Software, LLC



PRINCIPLES OF STATISTICS 83

P value reporting
When reporting "full" P value ("Show N digits after the decimal ..."):

(O Always use scientific format ("1.234e-6")
(® Use scientific format when the P value is less than:  |le6 v
(O Always use decimal format ("0.0000000000345")

Default # of digits after the decimal: | 5 =

See how Prism summarizes P values using asterisks, i0%*.e. ***,

4.6.10 How Prism computes P values from statistical ratios
Calcuations built-in to Prism

GraphPad Prism report exact P values with most statistical calculations
using these algorithms, adapted from sections 6.2 and 6.4 of Numerical
Recipes.

PFronF(F_Rati o, DF Nunerator, DF _Denom nator) =
Bet al (DF_Denom nato /2, DF Nunerator/2, DF_Denom nator / (DF_Denom nat

PFroml(T _Ratio, DF) = Betal (DF /2, 1/2, DF/ (DF + T_Ratio”2))

PFronZ(Z _Rati o)

PFroml(Z Ratio, Infinity)

PFronR( R_Val ue) PFroml(| R _Value| / SQRT((1 - R Valuen2)/DF) , DF)

PFronChi 2(Chi 2_Val ue, DF) = GanmaQ DF / 2, Chi 2Val ue /2)

Note that Betal is the incomplete beta function, and GammagQ is the
incomplete gamma function. The variable names should all be self-
explanatory.

Calculations with newer versions of Excel

If you want to compute P values using newer (2010 and later) Excel, use
these functions:

P value from F =F.DIST.RT (F, DFn, DFd)
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P value from t (two tailed) =T.DIST.2T(t, df)

P value from Chi Square =CHISQ.DIST.RT(ChiSquare, DF)

=% -
P value from z (two tailed) 2*(1.0-NORM.S.DIST(z,TRUE))

Calculations with older versions of Excel

If you want to compute P values using older (pre 2010) Excel, use these
functions:

P value from F =FDIST (F, DFn, DFd)

=TDIST (t, df, 2)
(The third argument, 2, specifies a
two-tail P value.)

=CHIDIST (ChiSquare, DF)

P value from t (two tailed)

P value from Chi Square

=2%(1.0-
P value from z (two tailed) 2*(1.0-NORMSDIST(2))

Reference
Numerical Recipes 3rd Edition: The Art of Scientific Computing, by

William H. Press, Saul A. Teukolsky, William T. Vetterling,
IBSN:0521880688.

4.7  Hypothesis testing and statistical significance

"Statistically significant". That phrase is commonly
misunderstood. Before analyzing data and

presenting statistical results, make sure you
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understand what statistical 'significance' means

and doesn't mean.

4.7.1 Statistical hypothesis testing

Much of statistical reasoning was developed in the context of quality
control where you need a definite yes or no answer from every analysis.
Do you accept or reject the batch? The logic used to obtain the answer is
called hypothesis testing.

First, define a threshold P value before you do the experiment. Ideally,
you should set this value based on the relative consequences of missing a
true difference or falsely finding a difference. In practice, the threshold
value (called alpha) is almost always set to 0.05 (an arbitrary value that
has been widely adopted).

Next, define the null hypothesis. If you are comparing two means, the
null hypothesis is that the two populations have the same mean. When
analyzing an experiment, the null hypothesis is usually the opposite of the
experimental hypothesis. Your experimental hypothesis -- the reason you
did the experiment -- is that the treatment changes the mean. The null
hypothesis is that two populations have the same mean (or that the
treatment has no effect).

Now, perform the appropriate statistical test to compute the P value.

e If the P value is less than the threshold, state that you “reject the null
hypothesis” and that the difference is “statistically significant”.

e If the P value is greater than the threshold, state that you “do not
reject the null hypothesis” and that the difference is “not statistically
significant”. You cannot conclude that the null hypothesis is true. All
you can do is conclude that you don't have sufficient evidence to reject
the null hypothesis.
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4.7.2

Asterisks

Once you have set a threshold significance level (usually 0.05), every
result leads to a conclusion of either "statistically significant" or not
"statistically significant". Some statisticians feel very strongly that the
only acceptable conclusion is significant or 'not significant', and oppose
use of adjectives or asterisks to describe values levels of statistical
significance.

Many scientists are not so rigid, and so prefer to use adjectives such as
“very significant” or “extremely significant”. Prism uses this approach as
shown in the tables below. These definitions are not entirely standard. If
you report the results in this way, you should define the symbols in your
figure legend.

Prior to Prism 7, the scheme below was always used. Now it is used if
you choose GP formatting®” or if you ask for four or more digits after the
decimal point.

P value Wording Summary
< 0.0001 Extremely significant kK
0.0001 to 0.001 Extremely significant ok

0.001 to 0.01 Very significant *x

0.01 to 0.05 Significant *

> 0.05 Not significant ns

If you choose APA or NEJM formatting for P values®®, Prism uses this
scheme (note the absence of ****),

P value Wording Summary
< 0.001 Very significant ok

0.001 to 0.01 Very significant *x

0.01 to 0.05 Significant *

> 0.05 Not significant ns

Prism stores the P values in double precision (about 12 digits of
precision), and uses that value (not the value you see displayed) when it
decides how many asterisks to show. So if the P value equals
0.05000001, Prism will display "0.0500" and label that comparison as

ns-.
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Decimal formatting of P values.[”

4.7.3 The false discovery rate and statistical signficance
Interpreting low P values is not straightforward

Imagine that you are screening drugs to see if they lower blood pressure.
You use the usual threshold of P<0.05 as defining statistical significance.
Based on the amount of scatter you expect to see and the minimum
change you would care about, you've chosen the sample size for each
experiment to have 80% power™” to detect the difference you are looking
for with a P value less than 0.05.

If you do get a P value less than 0.05, what is the chance that the drug
truly works?

The answer is: It depends on the context of your experiment. Let's start
with the scenario where based on the context of the work, you estimate
there is a 10% chance that the drug actually has an effect. What happens
when you perform 1000 experiments? Given your 10% estimate, the two
column totals below are 100 and 900. Since the power is 80%, you expect
80% of truly effective drugs to yield a P value less than 0.05 in your
experiment, so the upper left cell is 80. Since you set the definition of
statistical significance to 0.05, you expect 5% of ineffective drugs to yield
a P value less than 0.05, so the upper right cell is 45.

Drug really  Drug really doesn't Total

works work
P<0.05, “significant” 80 45 125
P>0.05, “not significant” 20 855 875
Total 100 900 1000

In all, you expect to see 125 experiments that yield a "statistically
significant" result, and only in 80 of these does the drug really work. The
other 45 experiments yield a "statistically significant" result but are false
positives or false discoveries. The false discovery rate (abbreviated FDR)
is 45/125 or 36%. Not 5%, but 36%. This is also called the False Positive
Rate (FPR).
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The table below, from chapter 12 of Essential Biostatistics™*, shows the
FDR for this and three other scenarios.

Prior FDR forFDR for 0.045 < P

Probability P<0.05 < 0.050
Comparing randomly 0% 100% 100%
assigned groups in a
clinical trial prior to
treatment
Testing a drug that might 10% 36% 78%
possibly work
Testing a drug with 50% 6% 27%
50:50 chance of working
Positive controls 100% 0% 0%

Each row in the table above is for a different scenario defined by a
different prior (before collecting data) probability of there being a real
effect. The middle column shows the expected FDR (also called FPR) as
calculated above. This column answers the question: "If the P value is
less than 0.05, what is the chance that there really is no effect and the
result is just a matter of random sampling?". Note this answer is not 5%.
The FDR is quite different than alpha, the threshold P value used to define
statistical significance.

The right column, determined by simulations, asks a slightly different
question based on work by Colquhoun(1,2).: "If the P value is just a little
bit less than 0.05 (between 0.045 and 0.050), what is the chance that
there really is no effect and the result is just a matter of random
sampling?" These numbers are much higher. Focus on the third row
where the prior probability is 50%. In this case, if the P value is just
barely under 0.05 there is a 27% chance that the effect is due to chance.
Note: 27%, not 5%! And in a more exploratory situation where you think
the prior probability is 10%, the false discovery rate for P values just
barely lower than 0.05 is 78%. In this situation, a statistically significant
result (defined conventionally) means almost nothing.

Bottom line: You can't interpret statistical significance (or a P value) in a
vacuum. Your interpretation depends on the context of the experiment.
The false discovery rate can be much higher than the value of alpha
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(usually 5%). Interpreting results requires common sense, intuition, and
judgment.

Reference
1. Colquhoun, D. (2014). An investigation of the false discovery rate and

the misinterpretation of p-values. Royal Society Open Science, 1(3),
140216-140216. http://doi.org/10.1098/rs0s.140216

2. Colguhoun, D (2019). The False Positive Risk: A Proposal Concerning
What to Do About p-Values. The American Statistician, Volume 73,
supplement 1.

4.7.4 A legal analogy: Guilty or not guilty?

The statistical concept of 'significant' vs. 'not significant' can be
understood by comparing to the legal concept of 'guilty' vs. 'not guilty'.

In the American legal system (and much of the world) a criminal
defendant is presumed innocent until proven guilty. If the evidence
proves the defendant guilty beyond a reasonable doubt, the verdict is
'guilty'. Otherwise the verdict is 'not guilty'. In some countries, this
verdict is 'not proven', which is a better description. A 'not guilty' verdict
does not mean the judge or jury concluded that the defendant is innocent
-- it just means that the evidence was not strong enough to persuade the
judge or jury that the defendant was guilty.

In statistical hypothesis testing, you start with the null hypothesis
(usually that there is no difference between groups). If the evidence
produces a small enough P value, you reject that null hypothesis, and
conclude that the difference is real. If the P value is higher than your
threshold (usually 0.05), you don't reject the null hypothesis. This doesn't
mean the evidence convinced you that the treatment had no effect, only
that the evidence was not persuasive enough to convince you that there
is an effect.

4.7.5 Advice: Avoid the concept of 'statistical significance' when possible
The term "significant" is seductive and easy to misinterpret, because the

statistical use of the word has a meaning entirely distinct from its usual
meaning. Just because a difference is statistically significant does not
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4.7.6

4.7.7

mean that it is biologically or clinically important or interesting. Moreover,
a result that is not statistically significant (in the first experiment) may
turn out to be very important.

Using the conventional definition with alpha=0.05, a result is said to be
statistically significant when a difference that large (or larger) would
occur less than 5% of the time if the populations were, in fact, identical.

The entire construct of 'hypothesis testing' leading to a conclusion that a
result is or is not 'statistically significant' makes sense in situations where
you must make a firm decision based on the results of one P value. While
this situation occurs in quality control, it doesn't really happen in other
situations. Usually, as with clinical trials, decisions are made based on
several kinds of evidence. In basic research, it is rare to make a decision
based on one experiment.

If you do not need to make a decision based on one P value, then there is
no need to declare a result "statistically significant" or not. Simply report

the P value as a number, without using the term 'statistically significant'.
Better, simply report the confidence interval, without a P value.

Advice: Avoid the word "significant”
The word "significant" has two meanings in research:

e A P value is less than a preset threshold (often 0.05) so reject the null
hypothesis and state the results are deemed statistically significant.

¢ A difference (or ratio or correlation...) is large enough that you think the
result has biological (or scientific or practical) relevance.

To avoid this ambiguity, don't use the S word. If the P value is less than a
threshold, say so. If an observed effect is large enough to be relevant,
say so. The word "significant" is never needed.

Advice: Don't P-Hack

Statistical results can only be interpreted at face value when every choice
in data analysis was performed exactly as planned and documented as
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part of the experimental design. This rule is commonly broken in some
research fileds. Instead, analyses are often done as shown below:

\
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Collect and analyze some data. If the results are not statistically
significant but show a difference or trend in the direction you expected,
collect some more data and reanalyze. Or try a different way to analyze
the data: remove a few outliers; transform to logarithms; try a
nonparametric test; redefine the outcome by normalizing (say, dividing
by each animal’s weight); use a method to compare one variable while
adjusting for differences in another; the list of possibilities is endless.
Keep trying until you obtain a statistically significant result or until you
run out of money, time, or curiosity.

The results from data collected this way cannot be interpreted at face
value. Even if there really is no difference (or no effect), the chance of
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finding a “statistically significant” result exceeds 5%. The problem is that
you introduce bias when you choose to collect more data (or analyze the
data differently) only when the P value is greater than 0.05. If the P value
was less than 0.05 in the first analysis, it might be larger than 0.05 after
collecting more data or using an alternative analysis. But you’d never see
this if you only collected more data or tried different data analysis
strategies when the first P value was greater than 0.05.

The term P-hacking was coined by Simmons et al (1) who also use the
phrase, “too many investigator degrees of freedom”. This is a general
term that encompasses dynamic sample size®* collection, HARKing®*,
and more. There are three kinds of P-hacking:

e The first kind of P-hacking involves changing the actual values
analyzed. Examples include ad hoc sample size selection, switching to
an alternate control group (if you don’t like the first results and your
experiment involved two or more control groups), trying various
combinations of independent variables to include in a multiple
regression (whether the selection is manual or automatic), trying
analyses with and without outliers, and analyzing various subgroups of
the data.

e The second kind of P-hacking is reanalyzing a single data set with
different statistical tests. Examples: Try parametric and nonparametric
tests. Analyze the raw data, then try analyzing the logarithms of the
data.

e The third kind of P-hacking is the garden of forking paths (2). This
happens when researchers performed a reasonable analysis given their
assumptions and their data, but would have done other analyses that
were just as reasonable had the data turned out differently.

Exploring your data can be a very useful way to generate hypotheses and
make preliminary conclusions. But all such analyses need to be clearly
labeled, and then retested with new data.

Reference

1. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive
psychology: undisclosed flexibility in data collection and analysis
allows presenting anything as significant. Psychological Science,
22(11), 1359-1366.
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2. Gelman, A., & Loken, E. (2013). The garden of forking paths: Why
multiple comparisons can be a problem, even when there is no
“fishing expedition” or ‘p-hacking’” and the research hypothesis was
posited ahead of time. Unpublished as of Jan. 2016

4.7.8 Advice: Don't keep adding subjects until you hit 'significance’.

A commonly used approach leads to misleading results

This approach is tempting, but wrong (so shown crossed out):

The problem with this approach is that you'll keep going if you don't like
the result, but stop if you do like the result. The consequence is that the
chance of obtaining a "significant" result if the null hypothesis were true
is a lot higher than 5%.

Simulations to demonstrate the problem

The graph below illustrates this point via simulation. We simulated data
by drawing values from a Gaussian distribution (mean=40, SD=15, but
these values are arbitrary). Both groups were simulated using exactly the
same distribution. We picked N=5 in each group and computed an
unpaired t test and recorded the P value. Then we added one subject to
each group (so N=6) and recomputed the t test and P value. We repeated
this until N=100 in each group. Then we repeated the entire simulation
three times. These simulations were done comparing two groups with
identical population means. So any "statistically significant" result we
obtain must be a coincidence -- a Type I error.

The graph plots P value on the Y axis vs. sample size (per group) on the X
axis. The green shaded area at the bottom of the graph shows P values
less than 0.05, so deemed "statistically significant".
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Experiment 1 (green) reached a P value less than 0.05 when N=7, but the
P value is higher than 0.05 for all other sample sizes. Experiment 2 (red)
reached a P value less than 0.05 when N=61 and also when N=88 or 89.

Experiment 3 (blue) curve hit a P value less than 0.05 when N=92 to
N=100.

If we followed the sequential approach, we would have declared the
results in all three experiments to be "statistically significant". We would
have stopped when N=7 in the first (green) experiment, so would never
have seen the dotted parts of its curve. We would have stopped the
second (red) experiment when N=6, and the third (blue) experiment
when N=92. In all three cases, we would have declared the results to be
"statistically significant".

Since these simulations were created for values where the true mean in
both groups was identical, any declaration of "statistical significance" is a
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Type I error. If the null hypothesis is true (the two population means are
identical) we expect to see this kind of Type I error in 5% of experiments
(if we use the traditional definition of alpha=0.05 so P values less than
0.05 are declared to be significant). But with this sequential approach, all
three of our experiments resulted in a Type I error.”™ If you extended the
experiment long enough (infinite N) all experiments would eventually
reach statistical significance. Of course, in some cases you would
eventually give up even without "statistical significance". But this
sequential approach will produce "significant" results in far more than 5%
of experiments, even if the null hypothesis were true, and so this
approach is invalid.

Bottom line

It is important that you choose a sample size and stick with it. You'll fool
yourself if you stop when you like the results, but keep going when you
don't. The alternative is using specialized sequential or adaptive methods
that take into account the fact that you analyze the data as you go. To
learn more about these techniques, look up 'sequential' or 'adaptive’
methods in advanced statistics books.

479 Advice: Don't HARK

Hypothesizing After the Result is Known (HARKing, Kerr 1998) is when
you analyze the data many different ways (say different subgroups),
discover an intriguing relationship, and then publish the data so it
appears that the hypothesis was stated before the data were collected.
This cartoon from XKCD shows the problem:
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4.8  Statistical power

If there really is a difference (or correlation or
association), you might not find it. it depends on
the power of your experiment. This section
explains what power means. Note that Prism does
not provide any tools to compute power.
Nonetheless, understanding power is essential to
interpreting statistical results properly.

4.8.1 Key concepts: Statistical Power
Definitions of power and beta

Even if the treatment really does affect the outcome, you might not
obtain a statistically significant difference in your experiment. Just by
chance, your data may yield a P value greater than 0.05 (or whatever
value, alpha, you use as your cutoff).

Let's assume we are comparing two means with a t test. Assume that the
two means truly differ by a particular amount, and that you perform many
experiments with the same sample size. Each experiment will have
different values (by chance) so each t test will yield different results. In
some experiments, the P value will be less than alpha (usually set to
0.05), so you call the results statistically significant. In other
experiments, the P value will be greater than alpha, so you will call the
difference not statistically significant.

If there really is a difference (of a specified size) between group means,
you won't find a statistically significant difference in every experiment.
Power is the fraction of experiments that you expect to yield a
"statistically significant" P value. If your experimental design has high
power, then there is a high chance that your experiment will find a
"statistically significant" result if the treatment really works.
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The variable beta is defined to equal 1.0 minus power (or 100% - power
%). If there really is a difference between groups, then beta is the

probability that an experiment like yours will yield a "not statistically
significant" result.

How much power do I need?

The power is the chance that an experiment will result in a "statistically
significant" result given some assumptions. How much power do you
need? These guidelines might be useful:

o If the power is less than 50% to detect some effect that you think is
worth detecting, then the study is really not helpful.

e Many investigators choose sample size to obtain a 80% power. This is
arbitrary, but commonly used.

e Ideally, your choice of acceptable power should depend on the
consequence of making a Type II error®™

GraphPad StatMate

GraphPad Prism does not compute statistical power or sample size, but
the companion program GraphPad StatMate does.

4.8.2 An analogy to understand statistical power

Looking for a tool in a basement

The concept of statistical power is a slippery one. Here is an analogy that
might help (courtesy of John Hartung, SUNY HSC Brooklyn).

You send your child into the basement to find a tool. He comes back and
says "it isn't there". What do you conclude? Is the tool there or not?
There is no way to be sure.

So let's express the answer as a probability. The question you really want
to answer is: "What is the probability that the tool is in the basement"?
But that question can't really be answered without knowing the prior
probability and using Bayesian thinking. We'll pass on that, and instead
ask a slightly different question: "If the tool really is in the basement,
what is the chance your child would have found it"?
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The answer depends on the answers to these questions:

e How long did he spend looking? If he looked for a long time, he is
more likely to have found the tool.

e How big is the tool? It is easier to find a snow shovel than the tiny
screw driver you use to fix eyeglasses.

e How messy is the basement? If the basement is a real mess, he was
less likely to find the tool than if it is super organized.

So if he spent a long time looking for a large tool in an organized
basement, there is a high chance that he would have found the tool if it
were there. So you can be quite confident of his conclusion that the tool
isn't there. If he spent a short time looking for a small tool in a messy
basement, his conclusion that "the tool isn't there" doesn't really mean
very much.

Analogy with sample size and power

So how is this related to computing the power of a completed
experiment? The question about finding the tool, is similar to asking
about the power of a completed experiment. Power is the answer to this
question: If an effect (of a specified size) really occurs, what is the
chance that an experiment of a certain size will find a "statistically
significant" result?

e The time searching the basement is analogous to sample size. If you
collect more data you have a higher power to find an effect.

e The size of the tool is analogous to the effect size you are looking for.
You always have more power to find a big effect than a small one.

e The messiness of the basement is analogous to the standard deviation
of your data. You have less power to find an effect if the data are very
scattered.

If you use a large sample size looking for a large effect using a system
with a small standard deviation, there is a high chance that you would
have obtained a "statistically significant effect"” if it existed. So you can be
quite confident of a conclusion of "no statistically significant effect". But if
you use a small sample size looking for a small effect using a system with
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a large standard deviation, then the finding of "no statistically significant
effect” really isn't very helpful.

4.8.3 Typel, Il (and lll) errors
Type I and Type 1II errors

When you make a conclusion about whether an effect is statistically
significant, you can be wrong in two ways:

e You've made a type I error when there really is no difference
(association, correlation..) overall, but random sampling caused your
data to show a statistically significant difference (association,
correlation...). Your conclusion that the two groups are really different
(associated, correlated) is incorrect.

e You've made a type II error when there really is a difference
(association, correlation) overall, but random sampling caused your
data to not show a statistically significant difference. So your
conclusion that the two groups are not really different is incorrect.

Type 0 and Type III errors
Additionally, there are two more kinds of errors you can define:

e You've made a type 0 error when you get the right answer, but asked
the wrong question! This is sometimes called a type III error,
although that term is usually defined differently (see below).

e You've made a type III error when you correctly conclude that the
two groups are statistically different, but are wrong about the direction
of the difference. Say that a treatment really increases some variable,
but you don't know this. When you run an experiment to find out,
random sampling happens to produce very high values for the control
subjects but low values for the treated subjects. This means that the
mean of the treated subjects is lower (on average) in the treated
group, and enough lower that the difference is statistically significant.
You'll correctly reject the null hypothesis of no difference and correctly
conclude that the treatment significantly altered the outcome. But you
conclude that the treatment lowered the value on average, when in
fact the treatment (on average, but not in your subjects) increases the

© 1995-2020 GraphPad Software, LLC



PRINCIPLES OF STATISTICS 101

value. Type III errors are very rare, as they only happen when random
chance leads you to collect low values from the group that is really
higher, and high values from the group that is really lower.

Using power to evaluate 'not significant' results
Example data

Motulsky et al. asked whether people with hypertension (high blood
pressure) had altered numbers of alpha,-adrenergic receptors on their

platelets (Clinical Science 64:265-272, 1983). There are many reasons to
think that autonomic receptor numbers may be altered in hypertension.
We studied platelets because they are easily accessible from a blood
sample. The results are shown here:

Variable Hypertensive Control
Number of subjects 18 17
Mean receptor number 257 263

(receptors per cell)

Standard Deviation 59.4 86.6

The two means were almost identical, so of course a t test computed a
very high P value. We concluded that there is no statistically significant
difference between the number of alpha, receptors on platelets of people

with hypertension compared to controls. When we published this nearly
30 years ago, we did not go further.

These negative data can be interpreted in terms of confidence intervals or
using power analyses. The two are equivalent and are just alternative
ways of thinking about the data.

Interpreting not significant results using a confidence interval

All results should be accompanied by confidence intervals showing how
well you have determined the differences (ratios, etc.) of interest. For our
example, the 95% confidence interval for the difference between group
means extends from -45 to 57 receptors/platelet. Once we accept the
assumptions of the t test analysis, we can be 95% sure that this interval
contains the true difference between mean receptor number in the two
groups. To put this in perspective, you need to know that the average
number of receptors per platelet is about 260.
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The interpretation of the confidence interval must be in a scientific
context. Here are two very different approaches to interpreting this
confidence interval.

e The CI includes possibilities of a 20% change each way. A 20% change
is huge. With such a wide CI, the data are inconclusive. Could be no
change. Could be big decrease. Could be big increase.

e The CI tells us that the true difference is unlikely to be more than 20%
in each direction. Since we are only interested in changes of 50%, we
can conclude that any difference is, at best, only 20% or so, which is
biologically trivial. These are solid negative results.

Both statements are sensible. It all depends on how you would interpret a
20% change. Statistical calculations can only compute probabilities. It is
up to you to put these in a scientific context. As with power calculations,
different scientists may interpret the same results differently.

Interpreting not significant results using power analysis
What was the power of this study to find a difference (if there was one)?

The answer depends on how large the difference really is. Here are the
results shown as a graph (created with GraphPad StatMate).
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All studies have a high power to detect "big" differences and a low power
to detect "small" differences, so power graph all have the same shape.
Interpreting the graph depends on putting the results into a scientific
context. Here are two alternative interpretations of the results:

e We really care about receptors in the heart, kidney, brain and blood
vessels, not the ones in the platelets (which are much more
accessible). So we will only pursue these results (do more studies) if
the difference was 50%. The mean number of receptors per platelet is
about 260, so we would only be seriously interested in these results if
the difference exceeded half of that, or 130. From the graph above,
you can see that this study had extremely high power to detect a
difference of 130 receptors/platelet. In other words, if the difference
really was that big, this study (given its sample size and variability)
would almost certainly have found a statistically significant difference.
Therefore, this study gives convincing negative results.

e Hey, this is hypertension. Nothing is simple. No effects are large.
We've got to follow every lead we can. It would be nice to find
differences of 50% (see above) but realistically, given the
heterogeneity of hypertension, we can't expect to find such a large
difference. Even if the difference was only 20%, we'd still want to do
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follow up experiments. Since the mean number of receptors per
platelet is 260, this means we would want to find a difference of about
50 receptors per platelet. Reading off the graph (or the table), you can
see that the power of this experiment to find a difference of 50
receptors per cell was only about 50%. This means that even if there
really were a difference this large, this particular experiment (given its
sample size and scatter) had only a 50% chance of finding a
statistically significant result. With such low power, we really can't
conclude very much from this experiment. A reviewer or editor making
such an argument could convincingly argue that there is no point
publishing negative data with such low power to detect a biologically
interesting result.

As you can see, the interpretation of power depends on how large a
difference you think would be scientifically or practically important to
detect. Different people may reasonably reach different conclusions. Note
that it doesn't help at all to look up the power of a study to detect the
difference we actually observed. This is a common misunderstanding™.

Comparing the two approaches

Confidence intervals and power analyses are based on the same
assumptions, so the results are just different ways of looking at the same
thing. You don't get additional information by performing a power analysis
on a completed study, but a power analysis can help you put the results
in perspective

The power analysis approach is based on having an alternative hypothesis
in mind. You can then ask what was the probability that an experiment
with the sample size actually used would have resulted in a statistically
significant result if your alternative hypothesis were true.

If your goal is simply to understand your results, the confidence interval
approach is enough. If your goal is to criticize a study of others, or plan a
future similar study, it might help to also do a power analysis.

Reference

1. Motulsky HJ, O'Connor DT, Insel PA. Platelet alpha 2-adrenergic
receptors in treated and untreated essential hypertension. Clin Sci
(Lond). 1983 Mar;64(3):265-72.
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4.8.5 Why doesn't Prism compute the power of tests
Post-hoc power analyses are rarely useful

Some programs report a power value as part of the results of t tests and
other statistical comparisons. Prism does not do so, and this page
explains why.

It is never possible to answer the question "what is the power of this
experimental design?". That question is simply meaningless. Rather, you
must ask "what is the power of this experimental design to detect an
effect of a specified size?". The effect size might be a difference between
two means, a relative risk, or some other measure of treatment effect.

Which effect size should you calculate power for? How large a difference
should you be looking for? These are not statistical questions, but rather
scientific questions. It only makes sense to do a power analysis when you
think about the data scientifically. It makes sense to compute the power
of a study design to detect an effect that is the smallest effect you'd care
about. Or it makes sense to compute the power of a study to find an
effect size determined by a prior study.

When computing statistical comparisons, some programs augment their
results by reporting the power to detect the effect size (or difference,
relative risk, etc.) actually observed in that particular experiment. The
result is sometimes called observed power, and the procedure is
sometimes called a post-hoc power analysis or retrospective power
analysis.

Many (perhaps most) statisticians (and I agree) think that these
computations are useless and misleading. If your study reached a
conclusion that the difference is not statistically significant, then -- by
definition-- its power to detect the effect actually observed is very low.
You learn nothing new by such a calculation. It can be useful to compute
the power of the study to detect a difference that would have been
scientifically or clinically worth detecting. It is not worthwhile to compute
the power of the study to detect the difference (or effect) actually
observed.
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Observed power is directly related to P value

Hoenig and Helsey (2001) pointed out that the observed power can be
computed from the observed P value as well as the value of alpha you
choose (usually 0.05). When the P value is 0.05 (assuming you define
statistical significance to mean P<0.05, so have set alpha to 0.05), then
the power must be 50%. If the P value is smaller than 0.05, the observed
power is greater than 50%. If the P value is greater than 0.05, then the
observed power is less than 50%. The observed power conveys nho new
information. The figure below (from Helsey, 2001) shows the relationship
between P value and observed power of an unpaired t test, when alpha is
set to 0.05.
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4.8.6 Advice: How to get more power

If you are not happy with the power of your study, consider this list of
approaches to increase power (abridged from Bausell and Li ).

The best approach to getting more power is to collect more, or higher
quality, data by:

e Increasing sample size. If you collect more data, you'll have more
power.

e Increasing sample size for the group that is cheaper (or less risky). If
you can't add more subjects to one group because it is too expensive,
too risky, or too rare, add subjects to the other group.

e Reduce the standard deviation of the values (when comparing means)
by using a more homogeneous group of subjects, or by improving the
laboratory techniques.

You can also increase power, by making some compromises:

e Increase your choice for alpha. Alpha is the threshold P value below
which you deem the results "statistically significant". While this is
traditionally set at 0.05, you can choose another value. If you raise
alpha, say to 0.10, you'll increase the power of the study to find a real
difference while also increasing the chance of falsely finding a
"significant" difference.

e Decide you only care about a larger difference or effect size. All
studies have higher power to detect a large difference than a small
one.
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4.9

49.1

Reference

1. R. Barker Bausell, Yu-Fang Li, Power Analysis for Experimental
Research: A Practical Guide for the Biological, Medical and Social Sciences,
IBSN:0521809169.

Choosing sample size

How big a sample do you need? The answer, of

course, is "it depends". This section explains what

it depends on. Note that Prism does not do any

sample size calculations, and this material is here

for general interest.
Overview of sample size determination
The four questions
Many experiments and clinical trials are run with too few subjects. An
underpowered study is a wasted effort because even substantial
treatment effects are likely to go undetected. Even if the treatment
substantially changed the outcome, the study would have only a small
chance of finding a "statistically significant" effect.
When planning a study, therefore, you need to choose an appropriate
sample size. The required sample size depends on your answers to these
questions:
e How scattered do you expect your data to be?
e How willing are you to risk mistakenly finding a difference by chance?

e How big a difference are you looking for?

e How sure do you need to be that your study will detect a difference, if it
exists? In other words, how much statistical power do you need?
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The first question requires that you estimate the standard deviation you
expect to see. If you can't estimate the standard deviation, you can't
compute how many subjects you will need. If you expect lots of scatter, it
is harder to discriminate real effects from random noise, so you'll need
lots of subjects.

The second question is answered with your definition of statistical
significance. Almost all investigators choose the 5% significance level,
meaning that P values less than 0.05 are considered to be "statistically
significant". If you choose a smaller significance level (say 1%), then
you'll need more subjects.

The third and fourth questions are trickier. Everyone would prefer to plan
a study that can detect very small differences, but this requires a large
sample size. And everyone wants to design a study with lots of power, so
it is quite certain to return a "statistically significant" result if the
treatment actually works, but this too requires lots of subjects.

An alternative approach to sample size calculations

Rather than asking you to answer those last two questions, StatMate
presents results in a table so you see the tradeoffs between sample size,
power, and the effect size you can detect. You can look at this table,
consider the time, expense and risk of your experiment, and decide on an
appropriate sample size. Note that StatMate does not directly answer the
question "how many subjects do I need?" but rather answers the related
question "if I use N subjects, what information can I learn?". This
approach to sample size calculations was recommended by Parker and
Berman (1).

In some cases, StatMate's calculations may convince you that it is
impossible to find what you want to know with the number of subjects
you are able to use. This can be very helpful. It is far better to cancel
such an experiment in the planning stage, than to waste time and money
on a futile experiment that won't have sufficient power. If the experiment
involves any clinical risk or expenditure of public money, performing such
a study can even be considered unethical.

Also...
One benefit of larger sample size is you have more power to detect a

specified effect, or with constant power can detect smaller effect sizes.
But there is another reason to choose larger sample sizes when possible.
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With larger samples, you can better assess teh distribution of the data. Is
the assumption of sampling from a Gaussian, or lognormal, distribution
reasonable? With larger samples, it is easier to assess
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4.9.2 Why choose sample size in advance?
The appeal of choosing sample size as you go

To many, calculating sample size before the study starts seems like a
nuisance. Why not do the analyses as you collect data? If your results are
not statistically significant, then collect some more data, and reanalyze.
If your results are statistically significant result, then stop the study and
don't waste time or money on more data collection.

The problem with this approach is that you'll keep going if you don't like
the result, but stop if you do like the result. The consequence is that the
chance of obtaining a "significant" result if the null hypothesis were true
is a lot higher than 5%.

Simulation to show the dangers of not choosing sample size in advance

The graph below illustrates this point via simulation. We simulated data
by drawing values from a Gaussian distribution (mean=40, SD=15, but
these values are arbitrary). Both groups were simulated using exactly the
same distribution. We picked N=5 in each group and computed an
unpaired t test and recorded the P value. Then we added one subject to
each group (so N=6) and recomputed the t test and P value. We repeated
this until N=100 in each group. Then we repeated the entire simulation
three times. These simulations were done comparing two groups with
identical population means. So any "statistically significant" result we
obtain must be a coincidence -- a Type I error.

The graph plots P value on the Y axis vs. sample size (per group) on the X
axis. The greenish shaded area at the bottom of the graph shows P values
less than 0.05, so deemed "statistically significant".
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The green curve shows the results of the first simulated set of
experiments. It reached a P value less than 0.05 when N=7, but the P
value is higher than 0.05 for all other sample sizes. The red curve shows
the second simulated experiment. It reached a P value less than 0.05
when N=61 and also when N=88 or 89. The blue curve is the third
experiment. It has a P value less than 0.05 when N=92 to N=100.

If we followed the sequential approach, we would have declared the
results in all three experiments to be "statistically significant". We would
have stopped when N=7 in the green experiment, so would never have
seen the dotted parts of its curve. We would have stopped the red
experiment when N=6, and the blue experiment when N=92. In all three
cases, we would have declared the results to be "statistically significant".
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4.9.3

Since these simulations were created for values where the true mean in
both populations was identical, any declaration of "statistical significance"
is a Type I error. If the null hypothesis is true (the two population means
are identical) we expect to see this kind of Type I error in 5% of
experiments (if we use the traditional definition of alpha=0.05 so P values
less than 0.05 are declared to be significant). But with this sequential
approach, all three of our experiments resulted in a Type I error. If you
extended the experiment long enough (infinite N) all experiments would
eventually reach statistical significance. Of course, in some cases you
would eventually give up even without "statistical significance". But this
sequential approach will produce "significant" results in far more than 5%
of experiments, even if the null hypothesis were true, and so this
approach is invalid.

Bottom line

It is important that you choose a sample size and stick with it. You'll fool
yourself if you stop when you like the results, but keep going when you
don't. If experiments continue when results are not statistically
significant, but stop when the results are statistically significant, the
chance of mistakenly concluding that results are statistical significant is
far greater than 5%.

There are some special statistical techniques for analyzing data
sequentially, adding more subjects if the results are ambiguous and
stopping if the results are clear. Look up 'sequential medical trials' in
advanced statistics books to learn more.

Choosing alpha and beta for sample size calculations
Standard approach

When computing sample size, many scientists use standard values for
alpha and beta. They always set alpha to 0.05, and beta to 0.20 (which
allows for 80% power).

The advantages of the standard approach are that everyone else does it
too and it doesn't require much thinking. The disadvantage is that it
doesn't do a good job of deciding sample size
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Choosing alpha and beta for the scientific context

When computing sample size, you should pick values for alpha and power
according to the experimental setting, and on the consequences of
making a Type I or Type II error ().

Let's consider four somewhat contrived examples. Assume you are
running a screening test to detect compounds that are active in your
system. In this context, a Type I error is concluding that a drug is
effective, when it really is not. A Type II error is concluding that a drug is
ineffective, when it fact it is effective. But the consequences of making a
Type I or Type II error depend on the context of the experiment. Let's
consider four situations.

e A. Screening drugs from a huge library of compounds with no biological
rationale for choosing the drugs. You know that some of the "hits" will
be false-positives (Type I error) so plan to test all those "hits" in
another assay. So the consequence of a Type I error is that you need to
retest that compound. You don't want to retest too many compounds,
so can't make alpha huge. But it might make sense to set it to a fairly
high value, perhaps 0.10. A Type II error occurs when you conclude that
a drug has no statistically significant effect, when in fact the drug is
effective. But in this context, you have hundreds of thousands of more
drugs to test, and you can't possibly test them all. By choosing a low
value of power (say 60%) you can use a smaller sample size. You know
you'll miss some real drugs, but you'll be able to test many more with
the same effort. So in this context, you can justify setting alpha to a
high value. Summary: low power, high alpha.

e B. Screening selected drugs, chosen with scientific logic. The
consequences of a Type I error are as before, so you can justify setting
alpha to 0.10. But the consequences of a Type II error are more serious
here. You've picked these compounds with some care, so a Type II error
means that a great drug might be overlooked. In this context, you want
to set power to a high value. Summary: high power, high alpha.

e C. Test carefully selected drugs, with no chance for a second round of
testing. Say the compounds might be unstable, so you can only use
them in one experiment. The results of this experiment -- the list of hits
and misses -- will be used to do a structure-activity relationship which
will then be used to come up with a new list of compounds for the
chemists to synthesize. This will be a expensive and time-consuming
task, so a lot is riding on this experiment, which can't easily be
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repeated. In this case, the consequences of both a Type I and Type II
error are pretty bad, so you set alpha to a small value (say 0.01) and
power to a large value (perhaps 99%). Choosing these values means
you'll need a larger sample size, but the cost is worth it here.
Summary: high power, low alpha.

e D. Rethink scenario C. The sample size required for scenario C may be
too high to be feasible. You simply can't run that many replicates. After
talking to your colleagues, you decide that the consequence of making a
Type I error (falsely concluding that a drug is effective) is much worse
than making a Type II error (missing a real drug). One false hit may
have a huge impact on your structure-activity studies, and lead the
chemists to synthesize the wrong compounds. Falsely calling a drug to
be inactive will have less severe consequences. Therefore you choose a
low value of alpha and also a low power. Summary: low power, low
alpha.

Bottom line

These scenarios are contrived, and I certainly am not in a position to tell
anyone how to design their efforts to screen for drugs. But these
scenarios make the point that you should choose values for alpha and
power after carefully considering the consequences of making a Type I
and Type II error. These consequences depend on the scientific context of
your experiment. It doesn't really make sense to just use standard values
for alpha and power.

4.9.4 What's wrong with standard values for effect size?
The appeal of using standard effect sizes

Computing sample size requires that you decide how large a difference
you are looking for -- how large a difference (association, correlation..)
would be scientifically interesting. You'll need a large sample size if your
goal is to find tiny differences. You can get by with smaller samples, if
you are only looking for larger differences.

In a very influential book (1) , Jacob Cohen makes some
recommendations for what to do when you don't know what effect size
you are looking for. He limits these recommendations to the behavioral
sciences (his area of expertise), and warns that all general
recommendations are more useful in some circumstances than others.
Here are his guidelines for an unpaired t test:
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e A "small" difference between means is equal to one fifth the standard
deviation.

e A "medium" effect size is equal to one half the standard deviation.
e A "large" effect is equal to 0.8 times the standard deviation.

So if you are having trouble deciding what effect size you are looking for
(and therefore are stuck and can't determine a sample size), Cohen would
recommend you choose whether you are looking for a "small", "medium",
or "large" effect, and then use the standard definitions.

The problem with standard effect sizes

Russell Lenth (2) argues that you should avoid these "canned" effect
sizes, and I agree. You must decide how large a difference you care to
detect based on understanding the experimental system you are using
and the scientific questions you are asking. Cohen's recommendations
seem a way to avoid thinking about the point of the experiment. It
doesn't make sense to only think about the difference you are looking at
in terms of the scatter you expect to see (anticipated standard deviation),
without even considering what the mean value might be.

If you choose standard definitions of alpha (0.05), power (80%), and
effect size (see above), then there is no need for any calculations. If you
accept those standard definitions for all your studies (that use an
unpaired t test to compare two groups), then all studies need a sample
size of 26 in each group to detect a large effect, 65 in each group to
detect a medium effect, 400 in each group to detect a small effect.

Bottom line

Choosing standard effect sizes is really the same as picking standard
sample sizes.
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4.9.5

Sample size for nonparametric tests

The problem of choosing sample size for data to be analyzed by
nonparametric tests

Nonparametric tests are used when you are not willing to assume that
your data come from a Gaussian distribution. Commonly used
nonparametric tests are based on ranking values from low to high, and
then looking at the distribution of sum-of-ranks between groups. This is
the basis of the Wilcoxon rank-sum (test one group against a hypothetical
median), Mann-Whitney (compare two unpaired groups), Wilcoxon
matched pairs (compare two matched groups), Kruskal-Wallis (three or
more unpaired groups) and Friedman (three or more matched groups).

When calculating a nonparametric test, you don't have to make any
assumption about the distribution of the values. That is why it is called
nonparametric. But if you want to calculate necessary sample size for a
study to be analyzed by a nonparametric test, you must make an
assumption about the distribution of the values. It is not enough to say
the distribution is not Gaussian, you have to say what kind of distribution
it is. If you are willing to make such an assumption (say, assume an
exponential distribution of values, or a uniform distribution) you should
consult an advanced text or use a more advanced program to compute
sample size.

A useful rule-of-thumb

Most people choose a nonparametric test when they don't know the shape
of the underlying distribution. Without making an explicit assumption
about the distribution, detailed sample size calculations are impossible.
Yikes!

But all is not lost! Depending on the nature of the distribution, the
nonparametric tests might require either more or fewer subjects. But
they never require more than 15% additional subjects if the following two
assumptions are true:

e You are looking at reasonably high humbers of subjects (how high
depends on the nature of the distribution and test, but figure at least a
few dozen)

e The distribution of values is not really unusual (doesn't have infinite
tails, in which case its standard deviation would be infinitely large).
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So a general rule of thumb is this (1):

If you plan to use a nonparametric test, compute the sample size
required for a parametric test and add 15%.
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4.10 Multiple comparisons

Multiple comparisons are everywhere, and
understanding multiple comparisons is key to

understanding statistics.

4.10.1 The problem of multiple comparisons

4.10.1.1 The multiple comparisons problem
Review of the meaning of P value and alpha

Interpreting an individual P value is straightforward. Consider the simple
case of comparing two means. Assuming the null hypothesis is true, the P
value is the probability that random subject selection alone would result
in a difference in sample means (or a correlation or an association...) at
least as large as that observed in your study.

Alpha is a threshold that you set in advance. If the P value is less than
alpha, you deem the comparison "statistically significant'. If you set alpha
to 5% and if the null hypothesis is true, there is a 5% chance of randomly
selecting subjects such that you erroneously infer a treatment effect in
the population based on the difference observed between samples

Multiple comparisons

Many scientific studies test multiple hypotheses. Some studies can
generate hundreds, or even thousands of comparisons.
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Interpreting multiple P values is difficult. If you test several independent
null hypotheses and leave the threshold at 0.05 for each comparison, the
chance of obtaining at least one “statistically significant” result is greater
than 5% (even if all null hypotheses are true). This graph shows the
problem. The probability at least one "significant" comparison is
computed from the number of comparisons (N) on the X axis using this
equation: 100(1.00 - 0.95N).
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Remember the unlucky number 13. If you perform 13 independent
comparisons, your chances are about 50% of obtaining at least one
'significant' P value (<0.05) just by chance.

The graph above (and the equation that generated it) assumes that the
comparisons are independent. In other words, it assumes that the chance
of any one comparison having a small P value is not related to the chance
of any other comparison having a small P value. If the comparisons are
not independent, it really is impossible to compute the probability shown
the the graph.

Example

Let's consider an example. You compare control and treated animals, and
you measure the level of three different enzymes in the blood plasma.
You perform three separate t tests, one for each enzyme, and use the
traditional cutoff of alpha=0.05 for declaring each P value to be
significant. Even if the treatment doesn't actually do anything, there is a
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14% chance that one or more of your t tests will be “statistically
significant”.

If you compare 10 different enzyme levels with 10 t tests, the chance of
obtaining at least one “significant” P value by chance alone, even if the
treatment really does nothing, is 40%. Finally, imagine that you test 100
different enzymes, at 10 time points, with 12 pre treatments... If you
don't correct for multiple comparisons, you are almost certain to find that
some of them are 'significant’, even if really all null hypotheses are true.

You can only correct for comparisons you know about

When reading a study, you can only account for multiple comparisons
when you know about all the comparisons made by the investigators. If
they report only “significant” differences, without reporting the total
number of comparisons, it is not possible to properly evaluate the results.
Ideally, all analyses should be planned before collecting data, and all
should be reported™.

Learn more

Multiple comparisons is a big problem, affecting interpretation of almost
all statistical results. Learn more from a review by Berry (1), excerpted
below, or from chapter 22 and 23 of Intuitive Biostatistics(2).

"Most scientists are oblivious to the problems of multiplicities. Yet they
are everywhere. In one or more of its forms, multiplicities are present
in every statistical application. They may be out in the open or hidden.
And even if they are out in the open, recognizing them is but the first
step in a difficult process of inference. Problems of multiplicities are the
most difficult that we statisticians face. They threaten the validity of
every statistical conclusion. " (1)

1.Berry, D. A. (2007). The difficult and ubiquitous problems of
multiplicities. Pharmaceutical Statistics , 6, 155-160

2. Motulsky, H.]J. (2010). Intuitive Biostatistics, 3rd edition. Oxford
University Press. ISBN=978-0-19-994664-8.

4.10.1.2 Lingo: Multiple comparisons

Multiple comparison test applies whenever you make several comparisons
at once.
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Post test is sometimes used interchangeably with multiple comparison
test (above) but sometimes as a short form of post-hoc test (below).

Post-hoc test is used for situations where you decide which comparisons
you want to make after looking at the data. You didn't plan ahead.

Planned comparison tests require that you focus in on a few scientifically
sensible comparisons. You can't decide which comparisons to do after
looking at the data. The choice must be based on the scientific questions
you are asking, and be chosen when you design the experiment.

Orthogonal comparison. When you only make a few comparison, the
comparisons are called "orthogonal” when the each comparison is among
different groups. Comparing Groups A and B is orthogonal to comparing
Groups C and D, because there is no information in the data from groups
A and B that is relevant when comparing Groups C and D. In contrast,
comparing A and B is not orthogonal to comparing B and C.

Multiple comparisons procedures are used to cope with a set of
comparisons at once. They analyze a family of comparisons.

When you set the customary significance level of 5% (or some other
value) to apply to the entire family of comparisons, it is called a
familywise error rate. When that significance level applies to only one
comparison at a time (no correction for multiple comparisons), it is called
a per-comparison error rate.

4.10.2 Three approaches to dealing with multiple comparisons

4.10.2.1 Approach 1: Don't correct for multiple comparisons

4.10.2.1.1 When it makes sense to not correct for multiple comparisons

Multiple comparisons can be accounted for with Bonferroni and other
corrections®*, or by the approach of controlling the False Discover Ratel*”
. But these approaches are not always needed. Here are three situations
were special calculations are not needed.
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Account for multiple comparisons when interpreting the results rather
than in the calculations

Some statisticians recommend never correcting for multiple comparisons
while analyzing data (1,2). Instead report all of the individual P values
and confidence intervals, and make it clear that no mathematical
correction was made for multiple comparisons. This approach requires
that all comparisons be reported. When you interpret these results, you
need to informally account for multiple comparisons. If all the null
hypotheses are true, you'd expect 5% of the comparisons to have
uncorrected P values less than 0.05. Compare this humber to the actual
number of small P values.

Following ANOVA, the unprotected Fishers Least Significant Difference
test?* follows this approach.

Corrections for multiple comparisons may not be needed if you make only
a few planned comparisons

The term planned comparison is used when:

e You focus in on a few scientifically sensible comparisons rather than
every possible comparison.

e The choice of which comparisons to make was part of the experimental
design.

e You did not succumb to the temptation to do more comparisons after
looking at the data.

It is important to distinguish between comparisons that are preplanned
and those that are not (post hoc). It is not a planned comparison if you
first look at the data, and based on that peek decide to make only two
comparisons. In that case, you implicitly compared all the groups.

If you only make a few planned comparisons, some statistical texts
recommend setting the significance level (or the meaning of the
confidence interval) for each individual comparison without correction for
multiple comparisons. In this case, the 5% traditional significance level
applies to each individual comparisons, rather than the whole family of
comparisons.
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The logic of not correcting for multiple comparisons seems to be that
some statisticians think this extra power is a deserved bonus for planning
the experiment carefully and focussing on only a few scientifically sensible
comparisons. Kepel and Wickles advocate this approach (reference
below). But they also warn it is not fair to "plan" to make all comparisons,
and thus not correct for multiple comparisons.

Corrections for multiple comparisons are not needed when the
comparisons are complementary

Ridker and colleagues (3) asked whether lowering LDL cholesterol would
prevent heart disease in patients who did not have high LDL
concentrations and did not have a prior history of heart disease (but did
have an abnormal blood test suggesting the presence of some
inflammatory disease). They study included almost 18,000 people. Half
received a statin drug to lower LDL cholesterol and half received placebo.

The investigators primary goal (planned as part of the protocol) was to
compare the number of “end points” that occurred in the two groups,
including deaths from a heart attack or stroke, nonfatal heart attacks or
strokes, and hospitalization for chest pain. These events happened about
half as often to people treated with the drug compared to people taking
placebo. The drug worked.

The investigators also analyzed each of the endpoints separately. Those
taking the drug (compared to those taking placebo) had fewer deaths,
and fewer heart attacks, and fewer strokes, and fewer hospitalizations for
chest pain.

The data from various demographic groups were then analyzed
separately. Separate analyses were done for men and women, old and
young, smokers and nonsmokers, people with hypertension and without,
people with a family history of heart disease and those without. In each of
25 subgroups, patients receiving the drug experienced fewer primary
endpoints than those taking placebo, and all these effects were
statistically significant.

The investigators made no correction for multiple comparisons for all
these separate analyses of outcomes and subgroups. No corrections were
needed, because the results are so consistent. The multiple comparisons
each ask the same basic question a different way (does the drug prevent
disease?), and all the comparisons point to the same conclusion - people
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taking the drug had less cardiovascular disease than those taking
placebo.

References
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3. Ridker. Rosuvastatin to Prevent Vascular Events in Men and Women
with Elevated C-Reactive Protein. N Engl J Med (2008) vol. 359 pp. 3195

4.10.2.1.2 Example: Planned comparisons

What are planned comparisons?

The term planned comparison is used when you focus in on a few
scientifically sensible comparisons. You don't do every possible
comparison. And you don't decide which comparisons to do after looking
at the data. Instead, you decide -- as part of the experimental design --
to only make a few comparisons.

Some statisticians recommend not correcting for multiple comparisons
when you make only a few planned comparisons. The idea is that you get
some bonus power as a reward for having planned a focussed study.

Prism always corrects for multiple comparisons, without regard for
whether the comparisons were planned or post hoc. But you can get
Prism to do the planned comparisons for you once you realize that a
planned comparison is identical to a Bonferroni corrected comparison for
selected pairs of means, when there is only one pair to compare.

Example data with incorrect analysis

In the graph below, the first column shows control data, and the second
column shows data following a treatment. The goal of the experiment is
to see if the treatment changes the measured activity (shown on the Y

axis). To make sure the vehicle (solvent used to dissolve the treatment)
isn't influencing the result, the experiment was performed with another
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control that lacked the vehicle (third column). To make sure the
experiment is working properly, nonspecific (blank) data were collected
and displayed in the fourth column.
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Here are the results of one-way ANOVA and Tukey multiple comparison
tests comparing every group with every other group.

One-way analysis of variance

P value P<0.0001
P value summary *hx
Are means signif. different? (P < Yes

0.05)

Number of groups 4

F 62.69

R squared 0.9592

ANOVA Table SS df MS

Treatment (between columns) 15050 3 5015

Residual (within columns) 640 8 80

Total 15690 11

Tukey's Multiple Comparison Test Mean Diff. q P value 95% CI of diff

Control vs Treated 22.67 4,389 P>0.05 -0.7210to 46.05
Control vs Con. wo vehicle -0.3333 0.06455 P>0.05 -23.72to 23.05

Control vs Blank 86.33 16.72 P<0.001 62.95t0 109.7

Treated vs Con. wo vehicle -23 4.454 P>0.05 -46.39t00.3877
Treated vs Blank 63.67 12.33 P<0.001 40.28to 87.05
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Con. wo vehicle vs Blank 86.67 16.78 P <0.001 63.28 to 110.1

The overall ANOVA has a very low P value, so you can reject the null
hypothesis that all data were sampled from groups with the same mean.
But that really isn't very helpful. The fourth column is a negative control,
so of course has much lower values than the others. The ANOVA P value
answers a question that doesn't really need to be asked.

Tukey's multiple comparison tests were used to compare all pairs of
means (table above). You only care about the first comparison -- control
vs. treated -- which is not statistically significant (P>0.05).

These results don't really answer the question your experiment set out to
ask. The Tukey multiple comparison tests set the 5% level of significance
to the entire family of six comparisons. But five of those six comparisons
don't address scientifically valid questions. You expect the blank values to
be much lower than the others. If that wasn't the case, you wouldn't have
bothered with the analysis since the experiment hadn't worked. Similarly,
if the control with vehicle (first column) was much different than the
control without vehicle (column 3), you wouldn't have bothered with the
analysis of the rest of the data. These are control measurements,
designed to make sure the experimental system is working. Including
these in the ANOVA and post tests just reduces your power to detect the
difference you care about.

Example data with planned comparison

Since there is only one comparison you care about here, it makes sense
to only compare the control and treated data.

From Prism's one-way ANOVA dialog, choose the Bonferroni comparison
between selected pairs of columns, and only select one pair.
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The difference is statistically significant with P<0.05, and the 95%
confidence interval for the difference between the means extends from
5.826 to 39.51.

When you report the results, be sure to mention that your P values and
confidence intervals are not corrected for multiple comparisons, so the P
values and confidence intervals apply individually to each value you
report and not to the entire family of comparisons.

In this example, we planned to make only one comparison. If you planned
to make more than one comparison, choose the Fishers Least Significant
Difference approach to performing multiple comparisons. When you
report the results, be sure to explain that you are doing planned
comparisons so have not corrected the P values or confidence intervals
for multiple comparisons.

Example data analyzed by t test

The planned comparisons analysis depends on the assumptions of
ANOVA, including the assumption that all data are sampled from groups
with the same scatter. So even when you only want to compare two
groups, you use data in all the groups to estimate the amount of scatter
within groups, giving more degrees of freedom and thus more power.

That assumption seems dubious here. The blank values have less scatter
than the control and treated samples. An alternative approach is to ignore
the control data entirely (after using the controls to verify that the
experiment worked) and use a t test to compare the control and treated
data. The t ratio is computed by dividing the difference between the
means (22.67) by the standard error of that difference (5.27, calculated
from the two standard deviations and sample sizes) so equals 4.301.
There are six data points in the two groups being compared, so four
degrees of freedom. The P value is 0.0126, and the 95% confidence
interval for the difference between the two means ranges from 8.04 to
37.3.

How planned comparisons are calculated

First compute the standard error of the difference between groups 1 and
2. This is computed as follows, where N, and N, are the sample sizes of

the two groups being compared (both equal to 3 for this example) and
MS. ..o 1S the residual mean square reported by the one-way ANOVA

(80.0 in this example):
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For this example, the standard error of the difference between the means
of column 1 and column 2 is 7.303.

Now compute the t ratio as the difference between means (22.67) divided
by the standard error of that difference (7.303). So t=3.104. Since the
MS___ is computed from all the data, the number of degrees of freedom is

error

the same as the number of residual degrees of freedom in the ANOVA
table, 8 in this example (total number of values minus number of
groups). The corresponding P value is 0.0146.

The 95% confidence interval extends from the observed mean by a
distance equal to SE of the difference (7.303) times the critical value from
the t distribution for 95% confidence and 8 degrees of freedom (2.306).
So the 95% confidence interval for the difference extends from 5.826 to
39.51.

4.10.2.1.3 Fisher's Least Significant Difference (LSD)

Fishers Least Significant Difference (LSD) test in Prism

Following one-way (or two-way) analysis of variance (ANOVA), you may
want to explore further and compare the mean of one group with the
mean of another. One way to do this is by using Fisher's Least Significant
Difference (LSD) test.

Key facts about Fisher's LSD test

e The Fishers LSD test is basically a set of individual t tests. It is only
used as a followup to ANOVA.

e Unlike the Bonferroni, Tukey, Dunnett and Holm methods, Fisher's LSD
does not correct for multiple comparisons.

¢ If you choose to use the Fisher's LSD test, you'll need to account for
multiple comparisons when you interpret the data, since the
computations themselves do not correct for multiple comparisons.

e The only difference between a set of t tests and the Fisher's LSD test, is
that t tests compute the pooled SD from only the two groups being

© 1995-2020 GraphPad Software, LLC



128

GraphPad Statistics Guide

compared, while the Fisher's LSD test computes the pooled SD from all
the groups (which gains power but depends on the assumption that all
groups are sampled from populations with the same SD).

e Prism performs the unprotected LSD test. Unprotected simply means
that calculations are reported regardless of the results of the ANOVA.
The unprotected Fisher's LSD test is essentially a set of t tests, without
any correction for multiple comparisons.

e Prism does not perform a protected Fisher's LSD test. Protection means
that you only perform the calculations described above when the overall
ANOVA resulted in a P value less than 0.05 (or some other value set in
advance). This first step sort of controls the false positive rate for the
entire family of comparisons. While the protected Fisher's LSD test is of
historical interest as the first multiple comparisons test ever developed,
it is no longer recommended. It pretends to correct for multiple
comparisons, but doesn't do so very well.

e How it worksDP®™,

4.10.2.2 Approach 2: Control the Type | error rate for the family of comparisons

4.10.2.2.1 What it means to control the Type | error for a family

Let's consider what would happen if you did many comparisons, and
determined whether each result is 'significant' or not. Also assume that
we are 'mother nature' so know whether a difference truly exists or not in
the populations from which the data were sampled.

In the table below, the top row represents the results of comparisons
where the null hypothesis is true -- the treatment really doesn't work.
Nonetheless, some comparisons will mistakenly yield a 'significant'
conclusion. The second line shows the results of comparisons where there
truly is a difference. Even so, you won't get a 'significant' result in every
experiment.

A, B, C and D represent numbers of comparisons, so the sum of
A+B+C+D equals the total number of comparisons you are making. You
can't make this table from experimental data because this table is an
overview of many experiments.
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"Significant" |"Not significant” [Total

No difference. A B A+B
Null hypothesis true

A difference truly exists Cc D C+D

Total A+C B+D A+B+C+D

In the table above, alpha is the expected value of A/(A+B). If you set
alpha to the usual value of 0.05, this means you expect 5% of all
comparisons done when the null hypothesis is true (A+B) to be
statistically significant (in the first column). So you expect A/(A+B) to
equal 0.05.

The usual approach to correcting for multiple comparisons is to set a
stricter threshold to define statistical significance. The goal is to set a
strict definition of significance such that -- if all null hypotheses are true
-- there is only a 5% chance of obtaining one or more 'significant' results
by chance alone, and thus a 95% chance that none of the comparisons
will lead to a 'significant' conclusion. The 5% applies to the entire
experiment, so is sometimes called an experimentwise error rate or
familywise error rate (the two are synonyms).

Setting a stricter threshold for declaring statistical significance ensures
that you are far less likely to be mislead by false conclusions of 'statistical
significance'. But this advantage comes at a cost: your experiment will
have less power to detect true differences.

The methods of Bonferroni®*, Tukey, Dunnett®, Dunn®*", Holm®** (and
more) all use this approach.

4.10.2.2.2 Multiplicity adjusted P values

If you choose the Bonferroni, Tukey, Dunnett or Dunn (nonparametric)
multiple comparisons test, Prism can compute a multiplicity adjusted P
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value for each comparison. This is a choice on the Options tab of the
ANOVA dialog. It is checked by default.

Key facts about multiplicity adjusted P values

e A separate adjusted P values is computed for each comparison in a
family of comparisons.

e The value of each adjusted P value depends on the entire family. The
adjusted P value for one particular comparison would have a different
value if there were a different nhumber of comparisons or if the data in
the other comparisons were changed.

e Because the adjusted P value is determined by the entire family of
comparisons, it cannot be compared to an individual P value computed
by a t test or Fishers Least Significant Difference test.

e Choosing the compute adjusted P values won't change Prism's
reporting of statistical significance. Instead Prism will report an
additional set of results -- the adjusted P value for each comparison.

e Multiplicity adjusted P values are not reported by most programs. If
you choose to report adjusted P values, be sure to explain that they
are multiplicity adjusted P values, and to give a reference. Avoid
ambiguous terms such as exact P values.

What are multiplicity adjusted P values?

Before defining adjusted P values, let's review the meaning of a P value
from a single comparison. The P value is the answer to two equivalent
questions:

e If the null hypothesis were true, what is the chance that random
sampling would result in a difference this large or larger?

e What is the smallest definition of the threshold (alpha) of statistical
significance at which this result would be statistically significant?

The latter form of the question is less familiar, but equivalent to the first.
It leads to a definition of the adjusted P value, which is the answer to this
question:
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e What is the smallest significance level, when applied to the entire
family of comparisons, at which this particular comparison will be
deemed statistically significant?

The idea is pretty simple. There is nothing special about significance
levels of 0.05 or 0.01... You can set the significance level to any
probability you want. The adjusted P value is the smallest familywise
significance level at which a particular comparison will be declared
statistically significant as part of the multiple comparison testing.

Here is a simple way to think about it. You perform multiple comparisons
twice. The first time you set the familywise significance level to 5%. The
second time, you set it to 1% level. If a particular comparison is
statistically significant by the first calculations (5% significance level) but
is not for the second (1% significance level), its adjusted P value must be
between 0.01 and 0.05, say 0.0323.

Learn more about adjusted P values
Three places to learn about adjusted P values:
e Wright defines these adjusted P values and argues for their

widespread use (S.P. Wright. Adjusted P-values for simultaneous
inference. Biometrics 48:1005-1013,1992).

e Multiple Comparisons and Multiple Tests (Text and Workbook Set) by
Peter H. Westfall, Randall D. Tobias, Dror Romm, 2000,
IBSN:1580258336.

e Adjusted P values are computed by SAS's PROC MULTTEST statement.
However, the SAS documentation does not do a good job of explaining
adjusted P values.

4.10.2.2.3 Bonferroni and Sidak methods

Bonferroni and Sidak tests in Prism

Prism can perform Bonferroni and Sidak multiple comparisons tests as
part of several analyses:

e Following one-way ANOVA. This makes sense when you are comparing
selected pairs of means, with the selection based on experimental
design. Prism also lets you choose Bonferroni tests when comparing
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e To analyze a stack of P values

every mean with every other mean. We don't recommend this. Instead,
choose the Tukey test"* if you want to compute confidence intervals for
every comparison or the Holm-Sidak test™ if you don't.

Following two-way ANOVA. If you have three or more columns, and wish
to compare means within each row (or three or more rows, and wish to
compare means within each column), the situation is much like one-way
ANOVA. The Bonferroni test is offered because it is easy to understand,
but we don't recommend it. If you enter data into two columns, and
wish to compare the two values at each row, then we recommend the
Bonferroni method, because it can compute confidence intervals for
each comparison. The alternative is the Holm-Sidak method, which has
more power, but doesn't compute confidence intervals.

e As part of the analysis that performs many t tests at once®*.

[ 642

Key facts about the Bonferroni and Sidak methods

e The inputs to the Bonferroni and Sidak (the letter S is pronounced "Sh")

methods are a list of P values, so these methods can be used whenever
you are doing multiple comparisons. They are not limited to use as
followup tests to ANOVA.

e It only makes sense to use these methods in situations for which a

specialized test has not been developed. For example, use the Tukey

method”** when comparing every mean with every other mean, and use

Dunnett's method®**to compare every mean with a control mean. But

use Bonferroni or Siddk when you select a set of means to compare.

e The Bonferroni and Siddk methods can determine statistical

significance, compute adjusted P value, and also compute confidence
intervals.
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 The Siddk method has a bit more power than the Bonferroni method.

« The Siddk method assumes that each comparison is independent of the
others. If this assumption is independence cannot be supported, choose
the Bonferroni method, which does not assume independence.

e The Bonferroni method is used more frequently, because it is easier to
calculate (which doesn't matter when a computer does the work), easier
to understand, and much easier to remember.

e Prism 5 and earlier offered the Bonferroni method, but not the Sidak
method.

e The Bonferroni mevthod is sometimes called the Bonferroni-Dunn
method. And the Sidak method is sometimes called the Bonferroni-
Sidak method.

References

1. H Abdi. The Bonferonni and Sidak Corrections for Multiple
Comparisons. In N.J. Salkind (Ed.), 2007, Encyclopedia of Measurement
and Statistics. Thousand Oaks (CA): Sage. pp. 103-107.

2. D] Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Fifth edition, 2011, ISBN=978-7-1398-5801-1

4.10.2.2.4 The Holm-Sidak method

The Holm-Sidak test in Prism

Prism can perform the Holm multiple comparisons test as part of several
analyses:
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Following one-way ANOVA. This makes sense when you are comparing
selected pairs of means, with the selection based on experimental
design. Prism also lets you choose Bonferroni tests when comparing
every mean with every other mean. We don't recommend this. Instead,
choose the Tukey test"™ if you want to compute confidence intervals for
every comparison or the Holm-Sidak test®™ if you don't.

Following two-way ANOVA. If you have three or more columns, and wish
to compare means within each row (or three or more rows, and wish to
compare means within each column), the situation is much like one-way
ANOVA. The Bonferroni test is offered because it is easy to understand,
but we don't recommend it. If you enter data into two columns, and
wish to compare the two values at each row, then we recommend the
Bonferroni method, because it can compute confidence intervals for
each comparison. The alternative is the Holm-Sidak method, which has
more power, but doesn't compute confidence intervals.

e As part of the analysis that performs many t tests at once®™™.

e To analyze a stack of P valuesP*.

Key facts about the Holm test

e The input to the Holm method is a list of P values, so it is not restricted

to use as a followup test to ANOVA.

e The Holm multiple comparison test can calculate multiplicity adjusted P

values®™, if you request them (2).

e The Holm multiple comparison test cannot compute confidence intervals

for the difference between means.

e The method is also called the Holm step-down method.

e Although usually attributed to Holm, in fact this method was first

described explicitly by Ryan (3) so is sometimes called the Ryan-Holm
step down method.

e Holm's method has more power than the Bonferroni or Tukey methods

(4). It has less power than the Newman-Keuls method, but that method
is not recommended because it does not really control the familywise
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significance level as it should, except for the special case of exactly
three groups (4).

e The Tukey and Dunnett multiple comparisons tests are used only as
followup tests to ANOVA, and they take into account the fact that the
comparisons are intertwined. In contrast, Holm's method can be used to
analyze any set of P values, and is not restricted to use as a followup
test after ANOVA.

« The Siddk modification of the Holm test makes it a bit more powerful,
especially when there are many comparisons.

o Note that Sidak's name is used as part of two distinct multiple
comparisons methods, the Holm-Sidak test and the Sidak test related to
the Bonferroni test®*.

e How it works.D*

References:
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4.10.2.2.5 Tukey and Dunnett methods

Tukey and Dunnett tests in Prism

Prism can perform either Tukey or Dunnett tests as part of one- and two-
way ANOVA. Choose to assume a Gaussian distribution and to use a
multiple comparison test that also reports confidence intervals. If you
choose to compare every mean with every other mean, you'll be choosing
a Tukey test. If you choose to compare every mean to a control mean,
Prism will perform the Dunnett test.

Key facts about the Tukey and Dunnett tests

e The Tukey and Dunnet tests are only used as followup tests to ANOVA.
They cannot be used to analyze a stack of P values.

e The Tukey test compares every mean with every other mean. Prism
actually computes the Tukey-Kramer test, which allows for the
possibility of unequal sample sizes.

e The Dunnett test compares every mean to a control mean.

e Both tests take into account the scatter of all the groups. This gives
you a more precise value for scatter (Mean Square of Residuals) which
is reflected in more degrees of freedom. When you compare mean A to
mean C, the test compares the difference between means to the
amount of scatter, quantified using information from all the groups,
not just groups A and C. This gives the test more power to detect
differences, and only makes sense when you accept the assumption
that all the data are sampled from populations with the same standard
deviation, even if the means are different.

e The results are a set of decisions: "statistically significant" or "not
statistically significant". These decisions take into account multiple
comparisons.

e It is possible to compute multiplicity adjusted P values™" for these
tests.

e Both tests can compute a confidence interval for the difference
between the two means. This confidence interval accounts for multiple
comparisons. If you choose 95% intervals, then you can be 95%
confident that all of the intervals contain the true population value.
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e Prism reports the g ratio for each comparison. By historical tradition,
this q ratio is computed differently for the two tests. For the Dunnett
test, q is the difference between the two means (D) divided by the
standard error of that difference (computed from all the data):
q=D/SED. For the Tukey test, q=sqrt(2)*D/SED. Because of these
different definitions, the two g values cannot be usefully compared.
The only reason to look at these q ratios is to compare Prism's results
with texts or other programs. Note that this use of the variable q is
distinct from the use of g when using the FDR approach.

e Different tables (or algorithms) are used for the Tukey and Dunnett
tests to determine whether or not a q value is large enough for a
difference to be declared to be statistically significant. This calculation
depends on the value of g, the number of groups being compared, and
the number of degrees of freedom.

e Read the details of how these (and other) tests are calculated here.

We use the original single step Dunnett method, not the newer step-
up or step-down methods.

4.10.2.2.6 Dunn's multiple comparisons after nonparametric ANOVA

If you choose nonparametric ANOVA, the Multiple Comparisons tab lets
you choose:

e No multiple comparisons

e Compare the mean rank of each group with the mean rank of every
other group

e Compare the mean rank of each group to the mean rank of a control
group you specify

e Compare selected pairs of columns.

In all cases, you won't have any choice of method. Prism will use Dunn's
method®* at a significance level alpha you choose (usually 0.05).
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4.10.2.2.7 Newman-Keuls method

Prism offers the Newman-Keuls test (sometimes called the Student-
Newman-Keuls test) for historical reasons, but we don't recommend ever
using it.

This test is a powerful way to compare all pairs of means, reporting
statistical significance but not confidence intervals or multiplicity adjusted
P values. The problem is it is too powerful, and so it does not maintain the
family-wise error rate at the specified level(2). In some cases, the chance
of a Type I error can be greater than the alpha level you specified.

1. MA Seaman, JR Levin and RC Serlin, Psychological Bulletin 110:577-
586, 1991.

4.10.2.3 Approach 3: Control the False Discovery Rate (FDR)

4.10.2.3.1 What it means to control the FDR

Defining the FDR

Here again is the table from the previous page™* predicting the results

from many comparisons. The only difference, is that I changed the term
"statistically signfiicant" to "discovery" because that is more commonly

used with the false discovery rate approach.

"Discovery" "Not a discovery” Total
No difference. A B A+B
Null hypothesis true
A difference truly exists C D C+D
Total A+C B+D A+B+C+D

The top row represents the results of comparisons where the null
hypothesis is true -- the treatment really doesn't work. Nonetheless,
some comparisons will mistakenly yield a P value small enough so that
comparison is deemed a "discovery".

The second row shows the results of comparisons where there truly is a
difference. Even so, you won't get a P value small enough to call that
finding a "discovery" in every experiment.
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A, B, C and D represent numbers of comparisons, so the sum of
A+B+C+D equals the total number of comparisons you are making.

Of course, you can only make this table in theory. If you collected actual
data, you'd never know if the null hypothesis is true or not, so could not
assign results to row 1 or row 2.

The usual approach to statistical significance and multiple comparisons
asks the question:

If the null hypothesis is true what is the chance of getting "statistically
significant" results?

The False Discovery Rate (FDR) answers a different question:

If a comparison is a "discovery", what is the chance that the null
hypothesis is true?

In the table, above the False Discovery rate is the ratio A/(A+C).
Controlling the FDR with Q

When dealing with multiple comparisons, you may want to set a FDR
value (usually called Q) and then use that value when deciding which
comparisons are "discoveries" and which are not with the intention that
the actual false discovery rate is no higher than Q.

If you are only making a single comparison, you can't do this without
defining the prior odds and using Bayesian reasoning®” . But if you have
many comparisons, simple methods let you control the FDR
approximately. You can set the desired value of Q, and the FDR method
will decide if each P value is small enough to be designated a "discovery".
If you set Q to 10%, you expect about 90% of the discoveries (in the
long run) to truly reflect actual differences, while no more than 10% are
false positives. In other words, you expect A/(A+C) to equal 10% (the
value you set for Q).

q values or adjusted P values
There are two ways to think about the false discovery rate.

e You enter a value for Q (note the uppercase; the desired false discovery
rate) and, using that definition, the program tells you which
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comparisons are discoveries and which are not. In Prism, you enter Q as
a percentage.

e For each comparison, the program computes a g value (note the lower
case). This value is also called an adjusted P value. The way to think
about this value is as follows. If you had set Q above to this value, then
the comparison you are looking at now would be right at the border of
being a discovery or not. Prism reports q as a decimal fraction.

4.10.2.3.2 Key facts about controlling the FDR

Prism uses the concept of False Discovery Rate as part of our method to
define outliers (from a stack of values®* or during nonlinear regression).
Prism also can use the FDR method when calculating many t tests at
onceP™ when analyzing a stack of P values computed elsewhere*”, and
as a multiple comparisons method following one-, two, or three-way
ANOVA.

Key facts about the False Discovery Rate approach

e This approach first computes a P value for each comparison. When used
as a followup to ANOVA, the comparisons are done using the Fisher
Least Significant Different approach (which by itself does not correct for
multiple comparisons but does pool the variances to increase the
number of degrees of freedom). When used to analyze a set of t tests,
each t test is first computed individually. When analyzing a set of P
values, of course you enter these P values directly.

e The goal is explained here®. You enter Q, the desired false discovery
rate (as a percentage), and Prism then tells you which P values are low
enough to be called a "discovery", with the goal of ensuring that no
more than Q% of those "discoveries" are actually false positives.

e Prism let's you choose one of three algorithms™* for deciding which P
values are small enough to be a "discovery". The Benjamini and
Hochberg method was developed first so is more standard. The
Benjamani, Krieger and Yekutieli method have more power, so is
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preferred. The method of Benjamini & Yekutieli makes fewer
assumptions, but has much less power.

e This FDR approach does not use the concept or phrase "statistically
significant" when a P value is small, but instead uses the term
"discovery". (Some authors use terminology differently.)

e The FDR approach cannot compute confidence intervals to accompany
each comparison.

¢ Q (note the upper case) is a value you enter as the desired FDR. Prism
also computes q (lower case) for each comparison. This value q is the
value of Q at which this particular comparison would be right on the
border of being classified as a discovery or not. The value q depends not
only on that one comparison, but on the humber of comparisons in the
family and the distribution of P values.

e The q values Prism reports are FDR-adjusted p values, not FDR-
corrected P values. This is a subtle distinction.

¢ If all the null hypotheses are true, there will be only a Q% chance that
you find one or more discoveries (where Q is the false discovery rate
you chose).

¢ If all the P values are less than your chosen value of Q (correcting for
the fact that P values are fractions and Q is a percentage), then all the
comparisons will be flagged as discoveries. (This rule is not true when
you choose the method of Benjamini & Yekutieli).

e If all the P values are greater than your chosen value of Q, then no
comparison will be flagged as a discovery.

e The q values are generally larger than the corresponding P value. The
exception is the q value for the comparison with the largest P value can
have a q value equal to the P value.

e The value of q is set by the P value for that comparison as well as the
other P values and the number of comparisons. The value you enter for
Q does not impact the computation of qg.

e The algorithms in Prism control the FDR, not the pFDR (which won't be
explained here).
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e The g values determined by these methods tend to be higher (and are
never lower) than the adjusted P values computed when using the usual
multiple comparisons methods (Bonferroni, etc.).

e Great nonmathematical review: Glickman, M. E., Rao, S. R., & Schultz, M. R.
(2014)._False discovery rate control is a recommended alternative to Bonferroni-
type adjustments in health studies. Journal of Clinical Epidemiology, 67(8), 850—
857.

4.10.2.3.3 Pros and cons of the three methods used to control the FDR

Prism offers three methods to control the FDR that differ in power,
simplicity and assumptions.

Original method of Benjamini and Hochberg (1).

This method was developed first, and is still the standard. It assumes
that "test statistics are independent or positive dependent”. This seems
to mean that while it is OK that some of the comparisons are positively
correlated (if one is low, the others tend to be low), the method does not
work well if some comparisons are negatively correlated (if one is low,
others tend to be high).

We offer this method because it is the standard.
Two-stage step-up method of Benjamini, Krieger and Yekutieli (2).

This method relies on the same assumption as the Benjamini and
Hochberg method, but it is a more clever method. It first examines the
distribution of P values to estimate the fraction of the null hypotheses
that are actually true. It then uses this information to get more power
when deciding when a P value is low enough to be called a discovery.

The only downside of this method is that the math is a bit more
complicated, so it is harder to use if you were doing the calculations by
hand.

The improved adaptive method of Benjamini, Krieger and Yekutieli has
more power than the Benjamini and Hochberg method, while making the
same assumptions, so we recommend it.
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The paper that describes this metnod (2) describes several methods.
Prism uses the method defined in section 6 , the two-stage linear step-up
procedure.

Corrected method of Benjamini & Yakutieli (3)

This method requires no assumptions about how the various comparisons
correlate with each other. But the price of this is that is has less power,
so identifies fewer comparisons as being a discovery. Another way of
saying this is that the method is very conservative.
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4.11 Testing for equivalence

4.11.1 Key concepts: Equivalence

Why test for equivalence?

Usually statistical tests are used to look for differences. But sometimes
your goal is to prove that two sets of data are equivalent. A conclusion of
"no statistically significant difference" is not enough to conclude that two
treatments are equivalent. You've really need to rethink how the test is
set up.
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In most experimental situations, your goal is to show that one treatment
is better than another. But in some situations, your goal is just the
opposite -- to prove that one treatment is indistinguishable from another,
that any difference is of no practical consequence. This can either be the
entire goal of the study (for example to show that a new formulation of a
drug works as well as the usual formulation) or it can just be the goal for
analysis of a control experiment to prove that a system is working as
expected, before moving on to asking the scientifically interesting
questions.

Standard statistical tests cannot be used to test for equivalence
Standard statistical tests cannot be used to test for equivalence.

A conclusion of “no statistically significant difference” between
treatments, simply means that you don't have strong enough evidence to
persuade you that the two treatments lead to different outcomes. That is
not the same as saying that the two outcomes are equivalent.

A conclusion that the difference is “statistically significant” means you
have strong evidence that the difference is not zero, but you don't know
whether the difference is large enough to rule out the conclusion that the
two treatments are functionally equivalent.

You must decide how large a difference has to be to in order to be
considered scientifically or clinically relevant.

In any experiment, you expect to almost always see some difference in
outcome when you apply two treatments. So the question is not whether
the two treatments lead to exactly the same outcome. Rather, the
question is whether the outcomes are close enough to be clinically or
scientifically indistinguishable. How close is that? There is no way to
answer that question generally. The answer depends on the scientific or
clinical context of your experiment.

To ask questions about equivalence, you first have to define a range of
treatment effects that you consider to be scientifically or clinically trivial.
This is an important decision that must be made totally on scientific or
clinical grounds.

You can test for equivalence using either a confidence interval or P value
approach

Statistical methods have been developed for testing for equivalence. You

can use either a confidence interval or a P value approach” ™.
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4.11.2 Testing for equivalence with confidence intervals or P values

Before you can test for equivalence, you first have to define a range of
treatment effects that you consider to be scientifically or clinically trivial.
You must set this range based on scientific or clinical judgment --
statistical analyses can't help.

If the treatment effect you observed is outside this zone of scientific or
clinical indifference, then clearly you can't conclude the treatments are
equivalent.

If the treatment effect does lie within the zone of clinical or scientific
indifference, then you can ask whether the data are tight enough to make
a strong conclusion that the treatments are equivalent.

Testing for equivalence with confidence intervals.

The figure below shows the logic of how to test for equivalence with
confidence intervals. The horizontal axis shows the absolute value of the
treatment effect (difference between mean responses). The filled circles
show the observed effect, which is within the zone of indifference. The
horizontal error bars show the one-sided 95% confidence intervals, which
show the largest treatment effect consistent with the data (with 95%
confidence).

Zone of
scientific or clinical
indifference

—
o—

0 | Treatment Effect|

In the experiment shown on top, even the limit of the confidence interval
lies within the zone of indifference. You can conclude (with 95%
confidence) that the two treatments are equivalent.
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In the experiment shown on the bottom, the confidence interval extends
beyond the zone of indifference. Therefore, you cannot conclude that the
treatments are equivalent. You also cannot conclude that the treatments
are not equivalent, as the observed treatment is inside the zone of
indifference. With data like these, you simply cannot make any conclusion
about equivalence.

Testing for equivalence using statistical hypothesis testing

Thinking about statistical equivalence with confidence intervals (above) is
pretty straightforward. Applying the ideas of statistical hypothesis testing
to equivalence is much trickier.

Statistical hypothesis testing starts with a null hypothesis, and then asks
if you have enough evidence to reject that null hypothesis. When you are
looking for a difference, the null hypothesis is that there is no difference.
With equivalence testing, we are looking for evidence that two treatments
are equivalent. So the “null” hypothesis, in this case, is that the
treatments are not equivalent, but rather that the difference is just barely
large enough to be outside the zone of scientific or clinical indifference.

In the figure above, define the null hypothesis to be that the true effect
equals the effect denoted by the dotted line. Then ask: If that null
hypothesis were true, what is the chance (given sample size and
variability) of observing an effect as small or smaller than observed. If
the P value is small, you reject the null hypothesis of nonequivalence, so
conclude that the treatments are equivalent. If the P value is large, then
the data are consistent with the null hypothesis of nonequivalent effects.

Since you only care about the chance of obtaining an effect so much lower
than the null hypothesis (and wouldn't do the test if the difference were
higher), you use a one-tail P value.

The graph above is plotted with the absolute value of the effect on the
horizontal axis. If you plotted the treatment effect itself, you would have
two dotted lines, symmetric around the 0 point, one showing a positive
treatment effect and the other showing a negative treatment effect. You
would then have two different null hypotheses, each tested with a one-tail
test. You'll see this referred to as Two One-Sided Tests Procedure (1, 2).
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The two approaches are equivalent

Of course, using the 95% confidence interval approach (using one-sided
95% confidence intervals) and the hypothesis testing approach (using
one-sided 0.05 threshold for significance are completely equivalent, so
always give the same conclusion. The confidence interval seems to me to
be far more straightforward to understand.

Testing for equivalence with Prism

Prism does not have any built-in tests for equivalence. But you can use
Prism to do the calculations:

1. Compare the two groups with a t test (paired or unpaired, depending
on experimental design).

2. Check the option to create 90%o0 confidence intervals. That's right
90%, not 95%.

3. If the entire range of the 90% confidence interval lies within the zone
of indifference that you defined, then you can conclude with 95%
confidence that the two treatments are equivalent.

Confused about the switch from 90% confidence
intervals to conclusions with 95% certainty?
Good. That means you are paying attention. It is
confusing!
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4.12 Nonparametric tests

4.12.1 Key concepts: Nonparametric tests

ANOVA, t tests, and many statistical tests assume that you have sampled
data from populations that follow a Gaussian®® bell-shaped distribution.

Biological data never follow a Gaussian distribution precisely, because a
Gaussian distribution extends infinitely in both directions, and so it
includes both infinitely low negative numbers and infinitely high positive
numbers! But many kinds of biological data follow a bell-shaped
distribution that is approximately Gaussian. Because ANOVA, t tests, and
other statistical tests work well even if the distribution is only
approximately Gaussian (especially with large samples), these tests are
used routinely in many fields of science.

An alternative approach does not assume that data follow a Gaussian
distribution. In this approach, values are ranked from low to high, and the
analyses are based on the distribution of ranks. These tests, called
nonparametric tests, are appealing because they make fewer
assumptions about the distribution of the data.

4.12.2 Advice: Don't automate the decision to use a nonparametric test

Don't use this approach:

Prism does not use this approach, because the choice of parametric vs.
nonparametric is more complicated than that.

e Often, the analysis will be one of a series of experiments. Since you
want to analyze all the experiments the same way, you cannot rely on
the results from a single normality test.

» Many biological variables follow lognormal distributions®®. If your data
are sampled from a lognormal distribution, the best way to analyze the
data is to first transform to logarithms and then analyze the logs. It
would be a mistake to jump right to nonparametric tests, without
considering transforming.
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e Other transforms can also be useful (reciprocal) depending on the
distribution of the data.

« Data can fail a normality test because of the presence of an outlier™®™,

Removing that outlier can restore normality.

e The decision of whether to use a parametric or nonparametric test is
most important with small data sets (since the power of nonparametric
tests is so low). But with small data sets, normality tests®** have little
power to detect nongaussian distributions, so an automatic approach
would give you false confidence.

e With large data sets, normality tests can be too sensitive. A low P
value from a normality test tells you that there is strong evidence that
the data are not sampled from an ideal Gaussian distribution. But you
already know that, as almost no scientifically relevant variables form
an ideal Gaussian distribution. What you want to know is whether the
distribution deviates enough from the Gaussian ideal to invalidate
conventional statistical tests (that assume a Gaussian distribution). A
normality test does not answer this question. With large data sets,
trivial deviations from the idea can lead to a small P value.

The decision of when to use a parametric test and when to use a
nonparametric test is a difficult one, requiring thinking and perspective.
This decision should not be automated.

4.12.3 The power of nonparametric tests

Why not always use nonparametric tests? You avoid assuming that the
data are sampled from a Gaussian distribution -- an assumption that is
hard to be sure of. The problem is that nonparametric tests have lower
power?®” than do standard tests. How much less power? The answer
depends on sample size.

This is best understood by example. Here are some sample data,
comparing a measurement in two groups, each with three subjects.

Control Treated

3.4 1234.5
3.7 1335.7
3.5 1334.8
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When you see those values, it seems obvious that the treatment
drastically increases the value being measured.

But let's analyze these data with the Mann-Whitney test®™
(nonparametric test to compare two unmatched groups). This test only
sees ranks. So you enter the data above into Prism, but the Mann
Whitney calculations only see the ranks:

Control Treated

1 4
3 6
2 5

The Mann-Whitney test then asks if the ranks were randomly shuffled
between control and treated, what is the chance of obtaining the three
lowest ranks in one group and the three highest ranks in the other group.
The nonparametric test only looks at rank, ignoring the fact that the
treated values aren't just higher, but are a whole lot higher. The answer,
the two-tail P value, is 0.10. Using the traditional significance level of 5%,
these results are not significantly different. This example shows that with
N=3 in each group, the Mann-Whitney test can never obtain a P value
less than 0.05. In other words, with three subjects in each group and the
conventional definition of 'significance’, the Mann-Whitney test has zero
power.

With large samples in contrast, the Mann-Whitney test has almost as
much power as the t test. To learn more about the relative power of
nonparametric and conventional tests with large sample size, look up the
term "Asymptotic Relative Efficiency" in an advanced statistics book.

4.12.4 Nonparametric tests with small and large samples
Small samples

Your decision to choose a parametric or nonparametric test matters the
most when samples are small (say less than a dozen values).

If you choose a parametric test and your data do not come from a
Gaussian distribution, the results won't be very meaningful. Parametric
tests are not very robust to deviations from a Gaussian distribution when
the samples are tiny.
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If you choose a nonparametric test, but actually do have Gaussian data,
you are likely to get a P value that is too large, as nonparametric tests
have less power than parametric tests, and the difference is noticeable
with tiny samples.

Unfortunately, normality tests have little power to detect whether or not a
sample comes from a Gaussian population when the sample is tiny. Small
samples simply don't contain enough information to let you make reliable
inferences about the shape of the distribution in the entire population.

Large samples

The decision to choose a parametric or nonparametric test matters less
with huge samples (say greater than 100 or so).

If you choose a parametric test and your data are not really Gaussian,
you haven't lost much as the parametric tests are robust to violation of
the Gaussian assumption, especially if the sample sizes are equal (or
nearly so).

If you choose a nonparametric test, but actually do have Gaussian data,
you haven't lost much as nonparametric tests have nearly as much power
as parametric tests when the sample size is large.

Normality tests work well with large samples, which contain enough data
to let you make reliable inferences about the shape of the distribution of
the population from which the data were drawn. But normality tests don't
answer the question you care about. What you want to know is whether
the distribution differs enough from Gaussian to cast doubt on the
usefulness of parametric tests. But normality tests answer a different
question. Normality tests ask the question of whether there is evidence
that the distribution differs from Gaussian. But with huge samples,
normality testing will detect tiny deviations from Gaussian, differences
small enough so they shouldn't sway the decision about parametric vs.
nonparametric testing.

Summary
Large samples (>100 Small samples (<12
or so) or so)

Parametric tests on OK. Tests are robust. Misleading. Not robust.
nongaussian data
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Nonparametric tests OK. Tests have good Misleading. Too little
on Gaussian data power. power.
Usefulness of A bit useful. Not very useful.
normality testing
4.12.5 Advice: When to choose a nonparametric test

Choosing when to use a nonparametric test is not straightforward. Here
are some considerations:

o Off-scale values. With some kinds of experiments, one, or a few,
values may be "off scale" -- too high or too low to measure. Even if the
population is Gaussian, it is impossible to analyze these data with a t
test or ANOVA. If you exclude these off scale values entirely, you will
bias the results. If you estimate the value, the results of the t test
depend heavily on your estimate. The solution is to use a
nonparametric test. Assign an arbitrary low value to values that are
too low to measure, and an arbitrary high value to values too high to
measure. Since the nonparametric tests only analyze ranks, it will not
matter that you don't know one (or a few) of the values exactly, so
long as the numbers you entered gave those values the correct rank.

e Transforming can turn a nongaussian distribution into a
Gaussian distribution. If you are sure the data do not follow a
Gaussian distribution, pause before choosing a nonparametric test.
Instead, consider transforming the data, perhaps using logarithms or
reciprocals. Often a simple transformation will convert non-Gaussian
data to a Gaussian distribution. Then analyze the transformed values
with a conventional test.

e Noncontinuous data. The outcome is a rank or score with only a few
categories. Clearly the population is far from Gaussian in these cases.
The problem with using nhonparametric tests is that so many values
will tie for the same rank. Nonparametric tests have special
corrections built-in to deal with tied ranks, but I am not sure how well
those work when there are lots of tied ranks. An alternative would be
to do a chi-square test®*”,
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e Small samples. If you have tiny samples (a few subjects in each
group), the nonparametric tests have little or no power®* to find a
significant difference.

« Normality tests should not be used”** to automatically decide
whether or not to use a nhonparametric test. But they can help you
make the decision.

e You really should choose your statistical test as part of the
experimental design. If you try this test, then that test, until you get a
result you like, you are likely to be mislead.

4.12.6 Lingo: The term "nonparametric"

The term nonparametric is used inconsistently.
Nonparametric method or nonparametric data?

The term nonparametric characterizes an analysis method. A statistical
test can be nonparametric or not, although the distinction is not as crisp
as you'd guess.

It makes no sense to describe data as being nonparametric, and the
phrase "nonparametric data" should never ever be used. The term
nonparametric simply does not describe data, or distributions of data.
That term should only be used to describe the method used to analyze
data.

Which methods are nonparametric?

Methods that analyze ranks are uniformly called nonparametric. These
tests are all named after their inventors, including: Mann-Whitney,
Wilcoxon, Kruskal-Wallis, Friedman, and Spearman.

Beyond that, the definition gets slippery.

What about modern statistical methods including randomization,
resampling and bootstrapping? These methods do not assume sampling
from a Gaussian distribution. But they analyze the actual data, not the
ranks. Are these methods nonparametric? Wilcox and Manly have each
written texts about modern methods, but they do not refer to these
methods as "nonparametric". Four texts of honparametric statistics (by
Conover, Gibbons, Lehmann, and Daniel) don't mention randomization,
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resampling or bootstrapping at all, but the texts by Hollander and
Wasserman do.

What about chi-square test, and Fisher's exact test? Are they
nonparametric? Daniel and Gibbons include a chapter on these tests their
texts of nonparametric statistics, but Lehmann and Hollander do not.

What about survival data? Are the methods used to create a survival
curve (Kaplan-Meier) and to compare survival curves (logrank or Mantel-
Haenszel) nonparametric? Hollander includes survival data in his text of
nonparametric statistics, but the other texts of nhonparametric statistics
don't mention survival data at all. I think everyone would agree that
fancier methods of analyzing survival curves (which involve fitting the
data to a model) are not nonparametric.
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4.13 Outliers

When analyzing data, you'll sometimes find that
one value is far from the others. Such a value is
called an outlier, a term that is usually not defined
rigorously. This section discusses the basic ideas
of identifying outliers. Look elsewhere to learn how

to identify outliers in Prism from a column of

data®*”, or while fitting a curve with nonlinear

regression.

4.13.1 An overview of outliers
What is an outlier?

When analyzing data, you'll sometimes find that one value is far from the
others. Such a value is called an outlier, a term that is usually not defined
rigorously.

Approach to thinking about outliers

When you encounter an outlier, you may be tempted to delete it from the
analyses. First, ask yourself these questions:

e Was the value entered into the computer correctly? If there was an
error in data entry, fix it.

e Were there any experimental problems with that value? For example,
if you noted that one tube looked funny, you can use that as
justification to exclude the value resulting from that tube without
needing to perform any calculations.

e Could the outlier be caused by biological diversity? If each value comes
from a different person or animal, the outlier may be a correct value.
It is an outlier not because of an experimental mistake, but rather
because that individual may be different from the others. This may be
the most exciting finding in your data!
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If you answered “no” to all three questions, you are left with two
possibilities.

e The outlier was due to chance. In this case, you should keep the value
in your analyses. The value came from the same distribution as the
other values, so should be included.

e The outlier was due to a mistake: bad pipetting, voltage spike, holes in
filters, etc. Since including an erroneous value in your analyses will
give invalid results, you should remove it. In other words, the value
comes from a different population than the other values, and is
misleading.

The problem, of course, is that you can never be sure which of these
possibilities is correct.

Robust methods

Some statistical tests are designed so that the results are not altered
much by the presence of one or a few outliers. Such tests are said to be
robust. When you use a robust method, there is less reason to want to
exclude outliers.

Most nonparametric tests compare the distribution of ranks. This makes
the test robust because the largest value has the largest rank, but it
doesn't matter how large that value is.

Other tests are robust to outliers because rather than assuming a
Gaussian distribution, they assume a much wider distribution where
outliers are more common (so have less impact).

4.13.2 Advice: Beware of identifying outliers manually

A common practice is to visually inspect the data, and remove outliers by
hand. The problem with this approach is that it is arbitrary. It is too easy
to keep points that help the data reach the conclusion you want, and to
remove points that prevent the data from reaching the conclusion you
want.
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The graph above was created via simulation. The values in all ten data
sets are randomly sampled from a Gaussian distribution with a mean of
50 and a SD of 15. But most people would conclude that the lowest value
in data set A is an outlier. Maybe also the high value in data set J. Most
people are unable to appreciate random variation, and tend to find
‘outliers' too often.

4.13.3 Advice: Beware of lognormal distributions

The Grubbs' and ROUT outlier tests are both based on the assumption
that the data, except the potential outlier(s), are sampled from a
Gaussian distribution.

But what if the underlying distribution is not Gaussian? Then the outlier
tests are misleading. A common situation is sampling from a lognormal
distribution.

The graph below shows four data sets sampled from lognormal
distributions.
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Three of those data sets seem to include an outlier, and indeed Grubbs'
outlier test identified outliers in three of the data sets.

But these data are not sampled from a Gaussian distribution with an
outlier. Rather they are sampled from a lognormal distribution. Transform
all the values to their logarithms, and the distribution becomes Gaussian:
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The apparent outliers are gone. Grubbs' test finds no outliers. The
extreme points only appeared to be outliers because extremely large
values are common in a lognormal distribution but are rare in a Gaussian
distribution. If you don’t realize the distribution was lognormal, an outlier
test would be very misleading.

4.13.4 How it works: Grubb's test
What can an outlier tests do?

No mathematical calculation can tell you for sure whether the outlier
came from the same, or a different, population than the others. Statistical
calculations, however, can answer this question:

If the values really were all sampled from a Gaussian distribution, what
is the chance that you would find one value as far from the others as you
observed?

If this probability is small, then you will conclude that the outlier is not
from the same distribution as the other values. Assuming you answered
no to all three questions above, you have justification to exclude it from
your analysis.

Statisticians have devised several methods for detecting outliers. All the
methods first quantify how far the outlier is from the other values. This
can be the difference between the outlier and the mean of all points, the
difference between the outlier and the mean of the remaining values, or
the difference between the outlier and the next closest value. Next,
standardize this value by dividing by some measure of scatter, such as
the SD of all values, the SD of the remaining values, or the range of the
data. Finally, compute a P value answering this question: If all the values
were really sampled from a Gaussian population, what is the chance of
randomly obtaining an outlier so far from the other values? If the P value
is small, you conclude that the deviation of the outlier from the other
values is statistically significant, and most likely from a different
population.

How Grubbs's test works

Grubbs' test is one of the most popular ways to define outliers, and is
quite easy to understand. This method is also called the ESD method
(extreme studentized deviate).
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The first step is to quantify how far the outlier is from the others.
Calculate the ratio Z as the difference between the outlier and the mean
divided by the SD. If Z is large, the value is far from the others. Note that
you calculate the mean and SD from all values, including the outlier.

_ |mean —value|

=D
You'll sometimes see this value referred to as G instead of Z.

Since 5% of the values in a Gaussian population are more than 1.96
standard deviations from the mean, your first thought might be to
conclude that the outlier comes from a different population if Z is greater
than 1.96. This approach only works if you know the population mean and
SD from other data. Although this is rarely the case in experimental
science, it is often the case in quality control. You know the overall mean
and SD from historical data, and want to know whether the latest value
matches the others. This is the basis for quality control charts.

When analyzing experimental data, you don't know the SD of the
population. Instead, you calculate the SD from the data. The presence of
an outlier increases the calculated SD. Since the presence of an outlier
increases both the numerator (difference between the value and the
mean) and denominator (SD of all values), Z can not get as large as you
may expect. For example, if N=3, Z cannot be larger than 1.155 for any
set of values. More generally, with a sample of N observations, Z can
never get larger than:

QT - 1)/ 17

Grubbs and others have tabulated critical values for Z which have been
tabulated. The critical value increases with sample size, as expected. If
your calculated value of Z is greater than the critical value in the table,
then the P value is less than 0.05.

Note that the Grubbs' test only tests the most extreme value in the
sample. If it isn't obvious which value is most extreme, calculate Z for all
values, but only calculate a P value for Grubbs' test from the largest value
of Z.

Prism can compute Grubbs' test with as few as three values in a data set.
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How to interpret the P value

If the P value is less than 0.05, it means that there is less than a 5%
chance that you'd encounter an outlier so far from the others (in either
direction) by chance alone, if all the data were really sampled from a
single Gaussian distribution.

Note that the 5% probability (or whatever value of alpha you choose)
applies to the entire data set. If your dataset has 100 values, and all are
sampled from a Gaussian distribution, there is a 5% chance that the
largest (or smallest) value will be declared to be an outlier by Grubbs'
test. If you performed outliers tests on lots of data sets, you'd expect this
kind of mistake in 5% of data sets.

Don't get confused and think that the 5% applies to each data point. If
there are 100 values in the data set all drawn from a Gaussian
distribution, there is a 5% chance that Grubbs test will identify the value
furthest from the mean as an outlier. This is different than concluding
(mistakenly) that you expect 5 of the values (5% of the total) to be
mistakenly declared to be outliers.

References

e B Iglewicz and DC Hoaglin. How to Detect and Handle Outliers (Asqc
Basic References in Quality Control, Vol 16) Amer Society for Quality
Control, 1993.

e V Barnett, T Lewis, V Rothamsted. Outliers in Statistical Data (Wiley
Series in Probability and Mathematical Statistics. Applied Probability and
Statistics) John Wiley & Sons, 1994.
4.13.5 How it works: ROUT method
The basics of ROUT

The ROUT method was developed as a method to identify outliers from
nonlinear regression. Learn more about the ROUT method.

Briefly, it first fits a model to the data using a robust method where
outliers have little impact. Then it uses a new outlier detection method,
based on the false discovery rate, to decide which points are far enough
from the prediction of the model to be called outliers.
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When you ask Prism to detect outliers in a stack of column data, it simply
adapts this method. It considers the values you entered to be Y values,
and fits the model Y= M, where M is a robust mean. [If you want to do
this with Prism's nonlinear regression analysis, you'd need to assign
arbirtrary X values to each row, and then fit to the model Y = X*0 + M. )

This method can detect any number of outliers (up to 30% of the sample
size).

Prism can perform the ROUT test with as few as three values in a data
set.

What is Q?

The ROUT method is based on the False Discovery Rate (FDR), so you
specify Q, which is the maximum desired FDR. The interpretation of Q
depends on whether there are any outliers in the data set.

When there are no outliers (and the distribution is entirely Gaussian), Q is
very similar to alpha. Assuming all data come from a Gaussian
distribution, Q is the chance of (falsely) identifying one or more outliers..

When there are outliers in the data, Q is the maximum desired false
discovery rate. If you set Q to 1%, then you are aiming for no more than
1% of the identified outliers to be false (are in fact just the tail of a
Gaussian distribution) and at least 99% to be actual outliers (from a
different distribution).

Comparing ROUT to Grubbs' method

I performed simulations®** to compare the Grubbs' and ROUT methods of
detecting outliers. Briefly, the data were sampled from a Gaussian
distribution. In most cases, outliers (drawn from a uniform distribution
with specified limits) were added. Each experimental design was
simulated 25,000 times, and I tabulated the number of simulations with
zero, one, two, or more than two outliers.

When there are no outliers, the ROUT and Grubbs' tests perform almost
identically. The value of Q specified for the ROUT method is equivalent to
the value of alpha you set for the Grubbs' test.

When there is a single outlier, the Grubb's test is slightly better able to
detect it. The ROUT method has both more false negatives and false
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positives. In other words, it is slightly more likely to miss the outlier, and
is also more likely to find two outliers even when the simulation only
included one. This is not so surprising, as Grubbs' test was designed to
detect a single outlier. While the difference between the two methods is
clear, it is not substantial.

When there are two outliers in a small data set, the ROUT test does a
much better job. The iterative Grubbs' test is subject to masking, while
the ROUT test is not. Whether or not masking is an issue depends on how
large the sample is and how far the outliers are from the mean of the
other values. In situations where masking is a real possibility, the ROUT
test works much better than Grubbs' test. For example, when n=10 with
two outliers, the Grubbs test never found both outliers and missed both in
98.8% of the simulations (in the remaining 1.2% of simulations, the
Grubbs' test found one of the two outliers). In contrast, the ROUT method
identified both outliers in 92.8% of those simulations, and missed both in
only 6% of simulations.

Summary:

e Grubbs' is slightly better than the ROUT method for the task it was
designed for: Detecting a single outlier from a Gaussian distribution.

e The ROUT method is much better than the iterative Grubbs' test at
detecting two outliers in some situations.

Reference

Motulsky HM and Brown RE, Detecting outliers when fitting data with
nonlinear regression — a new method based on robust nonlinear
regression and the false discovery rate, BMC Bioinformatics 2006, 7:123.
Download from http://www.biomedcentral.com/1471-2105/7/123.

4.13.6 The problem of masking

The figure below shows two data sets, identical except for one data point.
Clearly, the data set on the right has two outliers, and the one on the left
has only one. This conclusion is not at all subtle.
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Outliers detected by Grubbs test
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(Download the Prism file.)

The results of Grubbs' outlier test are surprising. That test (with alpha set
to 5%, but the same results are obtained with alpha set to 1%) does
identify the outlier in the data set on the left. No surprise there. But
Grubbs' test doesn't find any outliers in the data set on the right. The
presence of the second outlier prevents the outlier test from finding the
first one. This is called masking.

Grubbs' outlier test™ computes a ratio Z by first calculating the
difference between the possible outlier and the mean, and then dividing
that difference by the standard deviation. If Z is large enough
(considering the sample size), that point is declared to be an outlier. Note
that the mean and standard deviation are computed from all the data,
including the suspected outlier in the calculations. As the table below
shows, the presence of the second outlier (in a small data set) inflates the
standard deviation, and so decreases the value of Z to below the
threshold used to define an outlier.

Left (one outlier) Right (two outliers)

Mean 60.364 68.167

<0 33.384 41.759

, 2.8048 2.0554
11 12

n
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Critical Z to define 2.3547 2.4116

outlier (alpha=5%)
Critical Z to define 2:5641 26357
outlier (alpha=1%)

4.13.7 Simulations to compare the Grubbs' and ROUT methods
Goal

Since the ROUT method is not yet a standard method, we did simulations
to compare it to the Grubbs method. We compared the two methods for
data with no outliers, with one outlier and with two outliers.

e All simulations assumed a Gaussian distribution with a mean of 100 and
SD of 15 for the bulk of the values.

¢ A specified number of outliers were added. These were selected from a
uniform distribution whose limits are specified.

e How the false discovery rate (FDR) was computed: For each simulated
data set, the FDR was defined to be 0.0 if no outliers were detected. If
any outliers were detected, the FDR for that simulation is the fraction of
outliers that are false -values that were simulated from the Gaussian
distribution, and were not included as outliers by the simulation. The
overall FDR is the average of these individual FDR values over the
simulations.

e In each case, 25,000 simulations were done.
Details of the simulations
The table below shows the ten simulated experimental designs, which

differ in sample size (n), the number of outliers included in the sample,
and the range of values from which those outliers were selected.
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Design n # of outliers Outlier range
A 100

B 10 0

C 10 1 50-75

D 10 1 100-125
E 100 1 100-125
F 100 1 50-75

G 100 2 50-75

H 100 2 100-125
| 10 2 50-75

J 25 2 50-75

Here are the results. Each set of simulated data was analyzed by both the
Grubbs and ROUT methods.

Number of outliers identified
Design # Analysis method 0 1 2 >2 FDR
Outliers

1 A 0 Grubbs 5% 95.104% 4.69% 0.19% 0.20% 4.90%
2 A 0 Rout 5% 94.31% 4.68% 0.74% 0.10% 5.69%
3 A 0 Grubbs 1% 99.10% 0.90% 0.00% 0.00% 0.90%
4 A 0 Rout 1% 98.70% 1.21% 0.00% 0.08% 1.21%
5 B 0 Grubbs 5% 94.99% 5.01% 0.00% 0.00% 5.01%
6 B 0 Rout 5% 95.13% 3.87% 0.98% 0.02% 4.87%
7 B 0 Grubbs 1% 98.92% 1.08% 0.00% 0.00% 1.08%
8 B 0 Rout 1% 98.65% 1.14% 0.21% 0.00% 1.35%
9 C 1 Grubbs 1% 74.33% 25.41% 0.26% 0.00% 0.13%
10 C 1 Rout 1% 78.11% 21.29% 0.60% 0.00% 0.31%
11 D 1 Grubbs 1% 550% 93.51% 0.99% 0.00% 0.50%
12 D 1 Rout 1% 15.38% 84.01% 0.60% 0.00% 0.30%
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13 D 1 Grubbs 5% 0.20%  94.86% 4.75% 0.18%  2.51%
14 D 1 Rout 5% 2.30%  94.96% 2.70% 0.04%  2.73%
15 E 1 Grubbs 1% 0.00%  98.94% 1.05% 0.01%  0.53%
16 E 1 Rout 1% 0.00% 97.92% 1.94% 0.14%  1.07%
17 F 1 Grubbs 1% 43.94%  55.47% 0.57% 0.02%  0.40%
18 F 1 Rout 1% 47.08% 51.16% 1.63% 0.11%  1.05%
19 G 2 Grubbs 1% 39.70%  29.84% 30.72% 0.38%  0.16%
20 G 2 Rout 1% 29.08% 26.61%  40.37% 1.88%  0.82%
21 G 2 Grubbs 5% 10.82% 21.29% 6 3.66%  1.40%
4.23%
2 G 2 Rout 5% 7.52%  15.50% 66.54% 10.43%  3.96%
23 H 2 Grubbs 1% 0.00%  0.00%  98.89% 111%  037%
24 H 2 Rout 1% 0.00%  0.00%  97.57% 243%  0.84%
25 1 2 Grubbs 5% 98.80%  1.20% 0.00% 0.00%  0.00%
26 1 2 Rout 5% 6.06%  097%  92.80% 0.16%  0.05%
27 1 2 Rout 1% 27.46%  2.58% 69.95% 0.01%  0.004%
28 ] 2 Grubbs 5% 49.16%  7.86%  40.85% 2.14%  0.737%
29 ] 2 Rout 5% 2457% 13.27% 57.46% 0.71%  1.74%
30 ] 2 Grubbs 1% 90.21%  3.51% 6.20% 0.72%  0.24%
31 ] 2 Rout 1% 54.47%  15.08% 29.46% 0.98%  0.36%
Results

When there are no outliers

When the simulations added no outliers to the data sets, the ROUT and
Grubbs' tests perform almost identically. The value of Q specified for the
ROUT method is equivalent to the value of alpha you set for the Grubbs'
test. If you set alpha to 0.05 or Q to 5%, then you'll detect a single
outlier in about 5% of simulations, even though all data in these
simulations came from a Gaussian distribution.
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When there is one outlier

When the simulations include a single outlier not from the same Gaussian
distribution as the rest, the Grubb's test is slightly better able to detect
it. The ROUT method has both more false negatives and false positives. It
is slightly more likely to miss the outlier, and is also more likely to find
two outliers even when the simulation actually only included one.

This is not so surprising, as Grubbs' test was really designed to detect a
single outlier (although it can be used iteratively to detect more). While
the difference between the two methods is consistent, it is not
substantial.

When there are two outliers

When simulations include two outliers in a small data set, the ROUT test
does a much better job. The iterative Grubbs' test is subject to
masking”*®, while the ROUT test is not. Whether or not masking is an
issue depends on how large the sample is and how far the outliers are
from the mean of the other values. In situations where masking is a real
possibility, the ROUT test works much better than Grubbs' test. For
example, when n=10 with two outliers (experimental design I), the
Grubbs test never found both outliers and missed both outliers in 98.8%
of the simulations. In the remaining 1.2% of simulations, the Grubbs' test
found one of the two outliers. In contrast, the ROUT method identified
both outliers in 92.8% of those simulations, and missed both in only 6%
of simulations.

Reminder. Don't delete outliers without thinking.

One an outlier (or several outliers) is detected, stop and think. Don't just
delete it.

Think about the assumptions. Both the Grubbs' and ROUT methods
assume that the data (except for any outlers) are sampled from a
Gaussian distribution. If that assumption is violated, the "outliers" may be
from the same distribution as the rest. Beware of lognormal distributions.
These distributions have values in the tails that will often be incorrectly
flagged as outliers by methods that assume a Gaussian distribution.

Even if the value truly is an outlier from the rest, it may be a important
value. It may not be a mistake. It may tell you about biological
variability.
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Conclusion

Grubbs' is slightly better than the ROUT method for the task it was
designed for: Detecting a single outlier from a Gaussian distribution.

The Grubbs' test is much worse than the ROUT method at detecting two
outliers. I can't imagine any scientific situation where you know for sure
that there are either no outliers, or only one outlier, with no possibility of
two or more outliers. Whenever the presence of two (or more) outliers is
possible, we recommend that the ROUT method be used instead of the
Grubbs' test.

More details, with links to the Prism file used to do these simulations

4.14 Analysis checklists

All statistical analysis is based on a set of
assumptions. These checklists help you review the
assumptions, and make sure you have picked a
useful test. The checklists appear twice in this
guide: Once here with all the checklists together,
and again as part of the explanation for each
individual test.

Unpaired t test®™”

Paired t test®™

Mann-Whitney testD

Wilcoxon matched pairs test?*”

One-way ANQVADP*™

Repeated measures one-way ANOVAD™

Kruskal-Wallis test?**
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Friedman's testP*™”

Two-way ANOVAP*

Repeated measures two-way ANOVAD*

Contingency tables™™

Survival analysis?*’

OutliersP*

4.14.1 Unpaired t test

The unpaired t test compares the means of two unmatched groups,
assuming that the values follow a Gaussian distribution. Read
elsewhere to learn about choosing a t test®™, and interpreting the

results®,

\"/Are the populations distributed according to a Gaussian distribution?

The unpaired t test assumes that you have sampled your data from
populations that follow a Gaussian distribution. This assumption matters
less with large samples due to the Central Limit Theorem®".

Prism can perform normality tests as part of the Column Statistics™**

[ 239

analysis. Learn more" ™.

If your data do not come from Gaussian distributions, you have three
options. Your best option is to transform the values (perhaps to logs or
reciprocals) to make the distributions more Gaussian. Another choice is
to use the Mann-Whitney nonparametric test instead of a t test. A final
option is to use t test anyway, knowing that it is fairly robust to
violations of a Gaussian distribution with large samples.

v Do the two populations have the same variances?

The unpaired t test assumes that the two populations have the same
variances (and thus the same standard deviation).
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Prism tests for equality of variance with an F test. The P value from this
test answers this question: If the two populations really have the same
variance, what is the chance that you would randomly select samples
whose ratio of variances is as far from 1.0 (or further) as observed in
your experiment? A small P value suggests that the variances are
different.

Don't base your conclusion solely on the F test. Also think about data
from other similar experiments. If you have plenty of previous data that
convinces you that the variances are really equal, ignore the F test
(unless the P value is really tiny) and interpret the t test results as
usual.

In some contexts, finding that populations have different variances may
be as important as finding different means.

‘/Are the data unpaired?

The unpaired t test works by comparing the difference between means
with the standard error of the difference, computed by combining the
standard errors of the two groups. If the data are paired or matched,
then you should choose a paired t test instead. If the pairing is effective
in controlling for experimental variability, the paired t test will be more
powerful than the unpaired test.

‘/Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of a t test only make sense when the scatter is
random - that whatever factor caused a value to be too high or too low
affects only that one value. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low.

‘/Are you comparing exactly two groups?

Use the t test only to compare two groups. To compare three or more
groups, use one-way ANOVAP*“ followed by multiple comparison tests. It
is not appropriate to perform several t tests, comparing two groups at a
time. Making multiple comparisons increases the chance of finding a
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statistically significant difference by chance and makes it difficult to
interpret P values and statements of statistical significance. Even if you
want to use planned comparisons to avoid correcting for multiple
comparisons, you should still do it as part of one-way ANOVA to take
advantage of the extra degrees of freedom that brings you.

‘/Do both columns contain data?

If you want to compare a single set of experimental data with a
theoretical value (perhaps 100%) don't fill a column with that theoretical
value and perform an unpaired t test. Instead, use a one-sample t test™

‘/ Do you really want to compare means?

The unpaired t test compares the means of two groups. It is possible to
have a tiny P value - clear evidence that the population means are
different - even if the two distributions overlap considerably. In some
situations - for example, assessing the usefulness of a diagnostic test -
you may be more interested in the overlap of the distributions than in
differences between means.

‘/If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value®”, you should have predicted which
group would have the larger mean before collecting any data. Prism does
not ask you to record this prediction, but assumes that it is correct. If
your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50.

4.14.2 Pairedt test

The paired t test compares the means of two matched groups,
assuming that the distribution of the before-after differences follows a
Gaussian distribution.

‘/Are the differences distributed according to a Gaussian distribution?

The paired t test assumes that you have sampled your pairs of values
from a population of pairs where the difference between pairs follows a
Gaussian distribution.
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While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism®*",

Note that the paired t test, unlike the unpaired t test, does not assume
that the two sets of data (before and after, in the typical example) are
sampled from populations with equal variances.

‘/Was the pairing effective?

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, and a
corresponding P value. If the P value is small, the two groups are
significantly correlated. This justifies the use of a paired test.

If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.

‘/Are the pairs independent?

The results of a paired t test only make sense when the pairs are
independent® - that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent.

\/Are you comparing exactly two groups?

Use the t test only to compare two groups. To compare three or more
matched groups, use repeated measures one-way ANOVA followed by
post tests. It is not appropriate®™ to perform several t tests, comparing
two groups at a time.

© 1995-2020 GraphPad Software, LLC



174 GraphPad Statistics Guide

‘/If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted®” which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50.

v Do you care about differences or ratios?

The paired t test analyzes the differences between pairs. With some
experiments, you may observe a very large variability among the
differences. The differences are larger when the control value is larger.
With tﬁhese data, you'll get more consistent results if you perform a ratio
t test” ™.

4.14.3 Ratiot test

The ratio t test compares the means of two matched groups, assuming
that the distribution of the logarithms of the before/after ratios follows
a Gaussian distribution.

‘/Are the log(ratios) distributed according to a Gaussian distribution?

The ratio t test assumes that you have sampled your pairs of values
from a population of pairs where the log of the ratios follows a Gaussian
distribution.

While this assumption is not too important with large samples, it is
important with small sample sizes. Test this assumption with Prism®*".

‘/Was the pairing effective?

The pairing should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
pairing by calculating the Pearson correlation coefficient, r, between the
logarithms of the two columns of data. If the corresponding P value. If
the P value is small, the two groups are significantly correlated. This
justifies the use of a paired test.
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If this P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results of other similar
experiments.

‘/Are the pairs independent?

The results of a ratio t test only make sense when the pairs are
independent®” - that whatever factor caused a rato (of paired values) to
be too high or too low affects only that one pair. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have six pairs of values,
but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
would affect two of the pairs, so they are not independent.

‘/Are you comparing exactly two groups?

Use the t test only to compare two groups. To compare three or more
matched groups, transform the values to their logarithms, and then use
repeated measures one-way ANOVA followed by post tests. It is not
appropriate™ to perform several t tests, comparing two groups at a
time.

‘/If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted®” which
group would have the larger mean before collecting data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the reported P value and state that
P>0.50.

v Do you care about differences or ratios?

The ratio t test analyzes the logarithm of the ratios of paired values. The
assumption is that the ratio is a consistent measure of experimental
effect. With many experiments, you may observe that the difference
between pairs is a consistent measure of effect, and the ratio is not. In
these cases, use a paired t test™™, not the ratio t test.
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4.14.4 Mann-Whitney test

The Mann-Whitney test”?* is a nonparametric test that compares the
distributions of two unmatched groups. It is sometimes said to compare
medians, but this is not always true*.

‘/Are the “errors” independent?

The term “error” refers to the difference between each value and the
group median. The results of a Mann-Whitney test only make sense
when the scatter is random - that whatever factor caused a value to be
too high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent™ if you have six values in each
group, but these were obtained from two animals in each group (in
triplicate). In this case, some factor may cause all triplicates from one
animal to be high or low.

‘/Are the data unpaired?

The Mann-Whitney test works by ranking all the values from low to high,
and comparing the mean rank in the two groups. If the data are paired
or matched, then you should choose a Wilcoxon matched pairs test
instead.

‘/Are you comparing exactly two groups?

Use the Mann-Whitney test only to compare two groups. To compare
three or more groups, use the Kruskal-Wallis test followed by post tests.
It is not appropriate to perform several Mann-Whitney (or t) tests,
comparing two groups at a time.

v Do the two groups follow data distributions with the same shape?

If the two groups have distributions with similar shapes, then you can
interpret the Mann-Whitney test as comparing medians. If the
distributions have different shapes, you really cannot interpret®™ the
results of the Mann-Whitney test.
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v Do you really want to compare medians?

The Mann-Whitney test compares the medians of two groups (well, not
exactly®™). It is possible to have a tiny P value - clear evidence that the
population medians are different — even if the two distributions overlap
considerably.

‘/If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value, you should have predicted which group
would have the larger median before collecting any data. Prism does not
ask you to record this prediction, but assumes that it is correct. If your
prediction was wrong, then ignore the P value reported by Prism and
state that P>0.50. One- vs. two-tail P values.

‘/Are the data sampled from non-Gaussian populations?

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), and that difference is quite noticeable with small sample sizes.

4.14.5 Wilcoxon matched pairs test

The Wilcoxon test is a nonparametric test that compares two paired
groups. Read elsewhere to learn about choosing a t test®?*, and
interpreting the results®™.

‘/Are the pairs independent?

The results of a Wilcoxon test only make sense when the pairs are
independent® - that whatever factor caused a difference (between
paired values) to be too high or too low affects only that one pair. Prism
cannot test this assumption. You must think about the experimental
design. For example, the errors are not independent if you have six pairs
of values, but these were obtained from three animals, with duplicate
measurements in each animal. In this case, some factor may cause the
after-before differences from one animal to be high or low. This factor
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would affect two of the pairs (but not the other four), so these two are
not independent.

‘/Is the pairing effective?

If the P value is large (say larger than 0.05), you should question
whether it made sense to use a paired test. Your choice of whether to
use a paired test or not should not be based solely on this one P value,
but also on the experimental design and the results you have seen in
other similar experiments.

‘/Are you comparing exactly two groups?

Use the Wilcoxon test only to compare two groups. To compare three or
more matched groups, use the Friedman test followed by post tests. It is
not appropriate™ to perform several Wilcoxon tests, comparing two
groups at a time.

‘/If you chose a one-tail P value, did you predict correctly?

If you chose a one-tail P value®”, you should have predicted which
group would have the larger median before collecting any data. Prism
does not ask you to record this prediction, but assumes that it is correct.
If your prediction was wrong, then ignore the P value reported by Prism
and state that P>0.50.

\/Are the data clearly sampled from non-Gaussian populations?

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions. But there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using a t test.

‘/Are the differences distributed symmetrically?

The Wilcoxon test first computes the difference between the two values
in each row, and analyzes only the list of differences. The Wilcoxon test
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does not assume that those differences are sampled from a Gaussian
distribution. However it does assume that the differences are distributed
symmetrically around their median.

4.14.6 One-way ANOVA

One-way ANOVA compares the means of three or more unmatched

groups. Read elsewhere to learn about choosing a test®?*, and

interpreting the results®*,

‘/Are the populations distributed according to a Gaussian distribution?

One-way ANOVA assumes that you have sampled your data from
populations that follow a Gaussian distribution. While this assumption is
not too important with large samples due to the Central Limit Theorem®*
, it is important with small sample sizes (especially with unequal sample
sizes). Prism can test for violations of this assumption, but normality
tests have limited utility.

If your data do not come from Gaussian distributions, you have three
options. Your best option is to transform the values (perhaps to logs or
reciprocals) to make the distributions more Gaussian. Another choice is
to use the Kruskal-Wallis nonparametric test instead of ANOVA. A final
option is to use ANOVA anyway, knowing that it is fairly robust to
violations of a Gaussian distribution with large samples.

‘/ Do the populations have the same standard deviation?

One-way ANOVA assumes that all the populations have the same
standard deviation (and thus the same variance). This assumption is not
very important when all the groups have the same (or almost the same)
number of subjects, but is very important when sample sizes differ.

InStat tests for equality of variance with two tests: The Brown-Forsythe
test and Bartlett's test. The P value from these tests answer this
question: If the populations really have the same variance, what is the
chance that you'd randomly select samples whose variances are as
different from one another as those observed in your experiment. A
small P value suggests that the variances are different.
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Don't base your conclusion solely on these tests. Also think about data
from other similar experiments. If you have plenty of previous data that
convinces you that the variances are really equal, ignore these tests
(unless the P value is really tiny) and interpret the ANOVA results as
usual. Some statisticians recommend ignoring tests for equal variance
altogether if the sample sizes are equal (or nearly so).

In some experimental contexts, finding different variances may be as
important as finding different means. If the variances are different, then
the populations are different -- regardless of what ANOVA concludes
about differences between the means.

‘/Are the data unmatched?

One-way ANOVA works by comparing the differences among group
means with the pooled standard deviations of the groups. If the data are
matched, then you should choose repeated-measures ANOVA instead. If
the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.

‘/Are the “errors” independent?

The term “error” refers to the difference between each value and the
group mean. The results of one-way ANOVA only make sense when the
scatter is random - that whatever factor caused a value to be too high or
too low affects only that one value. Prism cannot test this assumption.
You must think about the experimental design. For example, the errors
are not independent if you have six values in each group, but these were
obtained from two animals in each group (in triplicate). In this case,
some factor may cause all triplicates from one animal to be high or low.

‘/ Do you really want to compare means?

One-way ANOVA compares the means of three or more groups. It is
possible to have a tiny P value - clear evidence that the population
means are different — even if the distributions overlap considerably. In
some situations - for example, assessing the usefulness of a diagnostic
test — you may be more interested in the overlap of the distributions
than in differences between means.
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‘/Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments.

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. These data need
to be analyzed by two-way ANOVA®“*, also called two factor ANOVA.

\/ Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it.

v Do the different columns represent different levels of a grouping
variable?

One-way ANOVA asks whether the value of a single variable differs
significantly among three or more groups. In Prism, you enter each
group in its own column. If the different columns represent different
variables, rather than different groups, then one-way ANOVA is not an
appropriate analysis. For example, one-way ANOVA would not be helpful
if column A was glucose concentration, column B was insulin
concentration, and column C was the concentration of glycosylated
hemoglobin.

4.14.7 Repeated measures one-way ANOVA

Repeated measures one-way ANOVA compares the means of three or
more matched groups. Read elsewhere to learn about choosing a test™**
, and interpreting the results®*".
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‘/Was the matching effective?

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
will not affect the difference between the measurements in that subject.
By analyzing only the differences, therefore, a matched test controls for
some of the sources of scatter.

The matching should be part of the experimental design and not
something you do after collecting data. Prism tests the effectiveness of
matching with an F test (distinct from the main F test of differences
between columns). If the P value for matching is large (say larger than
0.05), you should question whether it made sense to use a repeated-
measures test. Ideally, your choice of whether to use a repeated-
measures test should be based not only on this one P value, but also on
the experimental design and the results you have seen in other similar
experiments.

‘/Are the subjects independent?

The results of repeated-measures ANOVA only make sense when the
subjects are independent. Prism cannot test this assumption. You must
think about the experimental design. For example, the errors are not
independent if you have six rows of data, but these were obtained from
three animals, with duplicate measurements in each animal. In this case,
some factor may affect the measurements from one animal. Since this
factor would affect data in two (but not all) rows, the rows (subjects) are
not independent.

¥ Is the random variability distributed according to a Gaussian

distribution?

Repeated-measures ANOVA assumes that each measurement is the sum
of an overall mean, a treatment effect (the average difference between
subjects given a particular treatment and the overall mean), an
individual effect (the average difference between measurements made in
a certain subject and the overall mean) and a random component.
Furthermore, it assumes that the random component follows a Gaussian
distribution and that the standard deviation does not vary between
individuals (rows) or treatments (columns). While this assumption is not
too important with large samples, it can be important with small sample
sizes. Prism does not test for violations of this assumption.
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‘/Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments.

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

‘/ Is the factor “fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Type II ANOVA, also known as random-effect
ANOVA, assumes that you have randomly selected groups from an
infinite (or at least large) number of possible groups, and that you want
to reach conclusions about differences among ALL the groups, even the
ones you didn't include in this experiment. Type II random-effects
ANOVA is rarely used, and Prism does not perform it.

WIth repeated measures, Prism can fit a mixed effects model. This
model assumes the differences among subjects (or litters...) is random.
But it assumes the factor that defines which column each value is
entered into is fixed.

‘/Can you accept the assumption of circularity or sphericity?

Repeated-measures ANOVA assumes that the random error truly is
random. A random factor that causes a measurement in one subject to
be a bit high (or low) should have no affect on the next measurement in
the same subject. This assumption is called circularity or sphericity. 1t is
closely related to another term you may encounter, compound
symmetry.

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. One way to violate this assumption is to make the repeated
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measurements in too short a time interval, so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. When possible, also randomize the order of
treatments.

You only have to worry about the assumption of circularity when you
perform a repeated-measures experiment, where each row of data
represents repeated measurements from a single subject. It is
impossible to violate the assumption with randomized block experiments,
where each row of data represents data from a matched set of subjects.

If you cannot accept the assumption of sphericity, you can specify that
on the Parameters dialog. In that case, Prism will take into account
possible violations of the assumption (using the method of Geisser and
Greenhouse) and report a higher P value.

v If any values are missing, was that due to a random event?

Starting with Prism 8, repeated measures data can be calculated with
missing values by fitting a mixed model. But the results can only be
interpreted if the reason for the value being missing is random. If a value
is missing because it was too high to measure (or too low), then it is not
missing randomly. If values are missing because a treatment is toxic,
then the values are not randomly missing.

4.14.8 Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric test that compares three or
more unpaired or unmatched groups.Read elsewhere to learn about

choosing a test®*, and interpreting the results®*.

‘/Are the “errors” independent?

The term “error” refers to the difference between each value and the
group median. The results of a Kruskal-Wallis test only make sense when
the scatter is random - that whatever factor caused a value to be too
high or too low affects only that one value. Prism cannot test this
assumption. You must think about the experimental design. For
example, the errors are not independent if you have nine values in each
of three groups, but these were obtained from two animals in each group
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(in triplicate). In this case, some factor may cause all three values from
one animal to be high or low.

‘/Are the data unpaired?

If the data are paired or matched, then you should consider choosing
the Friedman test instead. If the pairing is effective in controlling for
experimental variability, the Friedman test will be more powerful than
the Kruskal-Wallis test.

‘/Are the data sampled from non-Gaussian populations?

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to detect a true
difference), especially with small sample sizes. Furthermore, Prism
(along with most other programs) does not calculate confidence intervals
when calculating nonparametric tests. If the distribution is clearly not
bell-shaped, consider transforming the values (perhaps to logs or
reciprocals) to create a Gaussian distribution and then using ANOVA.

v Do you really want to compare medians?

The Kruskal-Wallis test compares the medians of three or more groups.
It is possible to have a tiny P value - clear evidence that the population
medians are different — even if the distributions overlap considerably.

‘/Are the shapes of the distributions identical?

The Kruskal-Wallis test does not assume that the populations follow
Gaussian distributions. But it does assume that the shapes of the
distributions are identical. The medians may differ — that is what you are
testing for — but the test assumes that the shapes of the distributions
are identical. If two groups have very different distributions, consider
transforming the data to make the distributions more similar.

4.149 Friedman's test

Friedman's test is a nonparametric test that compares three or more
paired groups.
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‘/Was the matching effective?

The whole point of using a repeated-measures test is to control for
experimental variability. Some factors you don't control in the
experiment will affect all the measurements from one subject equally, so
they will not affect the difference between the measurements in that
subject. By analyzing only the differences, therefore, a matched test
controls for some of the sources of scatter.

The matching should be part of the experimental design and not
something you do after collecting data. Prism does not test the adequacy
of matching with the Friedman test.

‘/Are the subjects (rows) independent?

The results of a Friedman test only make sense when the subjects
(rows) are independent - that no random factor has affected values in
more than one row. Prism cannot test this assumption. You must think
about the experimental design. For example, the errors are not
independent if you have six rows of data obtained from three animals in
duplicate. In this case, some random factor may cause all the values
from one animal to be high or low. Since this factor would affect two of
the rows (but not the other four), the rows are not independent.

‘/Are the data clearly sampled from non-Gaussian populations?

By selecting a nonparametric test, you have avoided assuming that the
data were sampled from Gaussian distributions, but there are drawbacks
to using a nonparametric test. If the populations really are Gaussian, the
nonparametric tests have less power (are less likely to give you a small P
value), especially with small sample sizes. Furthermore, Prism (along
with most other programs) does not calculate confidence intervals when
calculating nonparametric tests. If the distribution is clearly not bell-
shaped, consider transforming the values (perhaps to logs or reciprocals)
to create a Gaussian distribution and then using repeated-measures
ANOVA.

‘/Is there only one factor?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group, with a drug treatment
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group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments.

Some experiments involve more than one factor. For example, you
might compare three different drugs in men and women. There are two
factors in that experiment: drug treatment and gender. Similarly, there
are two factors if you wish to compare the effect of drug treatment at
several time points. These data need to be analyzed by two-way ANOVA,
also called two-factor ANOVA.

4.14.10 Two-way ANOVA

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. For example, you might measure a
response to three different drugs in both men and women. In this
example, drug treatment is one factor and gender is the other. Read
elsewhere to learn about choosing a test®*, and interpreting the
results.n*

‘/Are the populations distributed according to a Gaussian distribution?

Two-way ANOVA assumes that your replicates are sampled from
Gaussian distributions. While this assumption is not too important with
large samples, it is important with small sample sizes, especially with
unequal sample sizes. Prism does not test for violations of this
assumption. If you really don't think your data are sampled from a
Gaussian distribution (and no transform will make the distribution
Gaussian), you should consider performing nonparametric two-way
ANOVA. Prism does not offer this test.

ANOVA also assumes that all sets of replicates have the same SD
overall, and that any differences between SDs are due to random
sampling.

‘/Are the data unmatched?

Standard two-way ANOVA works by comparing the differences among
group means with the pooled standard deviations of the groups. If the
data are matched, then you should choose repeated-measures ANOVA
instead. If the matching is effective in controlling for experimental
variability, repeated-measures ANOVA will be more powerful than
regular ANOVA.
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‘/Are the “errors” independent?

The term “error” refers to the difference between each value and the
mean of all the replicates. The results of two-way ANOVA only make
sense when the scatter is random - that whatever factor caused a value
to be too high or too low affects only that one value. Prism cannot test
this assumption. You must think about the experimental design. For
example, the errors are not independent if you have six replicates, but
these were obtained from two animals in triplicate. In this case, some
factor may cause all values from one animal to be high or low.

v Do you really want to compare means?

Two-way ANOVA compares the means. It is possible to have a tiny P
value - clear evidence that the population means are different - even if
the distributions overlap considerably. In some situations - for example,
assessing the usefulness of a diagnostic test - you may be more
interested in the overlap of the distributions than in differences between
means.

‘/Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.

Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA. Prism does not perform three-way
ANOVA.

‘/Are both factors “‘fixed” rather than “random”?

Prism performs Type I ANOVA, also known as fixed-effect ANOVA. This
tests for differences among the means of the particular groups you have
collected data from. Different calculations are needed if you randomly
selected groups from an infinite (or at least large) number of possible
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groups, and want to reach conclusions about differences among ALL the
groups, even the ones you didn't include in this experiment.

4.14.11 Repeated measures two-way ANOVA

Two-way ANOVA, also called two-factor ANOVA, determines how a
response is affected by two factors. "Repeated measures" means that
one of the factors was repeated. For example you might compare two
treatments, and measure each subject at four time points (repeated).
Read elsewhere to learn about choosing a test®*, graphing the data®®*,
and interpreting the results®® b«

‘/Are the data matched?

If the matching is effective in controlling for experimental variability,
repeated-measures ANOVA will be more powerful than regular ANOVA.
Also check that your choice in the experimental design tab matches how
the data are actually arranged. If you make a mistake, and the
calculations are done assuming the wrong factor is repeated, the results
won't be correct or useful.

‘/Are there two factors?

One-way ANOVA compares three or more groups defined by one factor.
For example, you might compare a control group with a drug treatment
group and a group treated with drug plus antagonist. Or you might
compare a control group with five different drug treatments. Prism has a
separate analysis for one-way ANOVA.

Some experiments involve more than two factors. For example, you
might compare three different drugs in men and women at four time
points. There are three factors in that experiment: drug treatment,
gender and time. These data need to be analyzed by three-way ANOVA,
also called three-factor ANOVA.

‘/Are both factors “‘fixed” rather than “random”?

While Prism assumes the participants in repeated measures are chosen
randomly, it assumes that the treatments or categories desighated by
rows or data set columns are fixed. This means you are asking about
how those particular treatments or categories affect the results.
Different calculations would be needed if you randomly selected the
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treatments or categories from an infinite (or at least large) number of
possible treatments or categories, and want to reach conclusions about
differences among ALL the treatments or categories, even the ones you
didn't include in this experiment. Prism does not handle this situation.

‘/Can you accept the assumption of sphericity?

A random factor that causes a measurement in one subject to be a bit
high (or low) should have no effect on the next measurement in the
same subject. This assumption is called circularity or sphericity. It is
closely related to another term you may encounter in advanced texts,
compound symmetry.

You only have to worry about the assumption of circularity when your
experiment truly is a repeated-measures experiment, with
measurements from a single subject. Circularity is unlikely to be an issue
with randomized block experiments where you used a matched set of
subjects (or a matched set of experiments)

Repeated-measures ANOVA is quite sensitive to violations of the
assumption of circularity. If the assumption is violated, the P value will
be too low. You'll violate this assumption when the repeated
measurements are made too close together so that random factors that
cause a particular value to be high (or low) don't wash away or dissipate
before the next measurement. To avoid violating the assumption, wait
long enough between treatments so the subject is essentially the same
as before the treatment. Also randomize the order of treatments, when
possible.

v Consider alternatives to repeated measures two-way ANOVA.

Two-way ANOVA may not answer the questions your experiment was
designed to address. Consider alternatives.

v If any values are missing, was that due to a random event?

Starting with Prism 8, repeated measures data can be calculated with
missing values by fitting a mixed model. But the results can only be
interpreted if the reason for the value being missing is random. If a value
is missing because it was too high to measure (or too low), then it is not
missing randomly. If values are missing because a treatment is toxic,
then the values are not randomly missing.
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4.14.12 Contingency tables

Contingency tables summarize results where you compared two or
more groups and the outcome is a categorical variable (such as disease
vs. no disease, pass vs. fail, artery open vs. artery obstructed). Read
elsewhere to learn about relative risks & odds ratios®™" sensitivity &

553

specificity®®, and interpreting P values®*,

‘/Are the subjects independent?

The results of a chi-square or Fisher's test only make sense if each
subject (or experimental unit) is independent of the rest. That means
that any factor that affects the outcome of one subject only affects that
one subject. Prism cannot test this assumption. You must think about
the experimental design. For example, suppose that the rows of the
table represent two different kinds of preoperative antibiotics and the
columns denote whether or not there was a postoperative infection.
There are 100 subjects. These subjects are not independent if the table
combines results from 50 subjects in one hospital with 50 subjects from
another hospital. Any difference between hospitals, or the patient groups
they serve, would affect half the subjects but not the other half. You do
not have 100 independent observations. To analyze this kind of data, use
the Mantel-Haenszel test or logistic regression. Beginning with version
8.3.0, Prism offers both simple logistic regression and multiple logistic

regression.

‘/Are the data unpaired?

In some experiments, subjects are matched for age and other variables.
One subject in each pair receives one treatment while the other subject
gets the other treatment. These data should be analyzed by special
methods such as McNemar's test®™. Paired data should not be analyzed
by chi-square or Fisher's test.

\/Is your table really a contingency table?

To be a true contingency table, each value must represent humbers of
subjects (or experimental units). If it tabulates averages, percentages,
ratios, normalized values, etc. then it is not a contingency table and the
results of chi-square or Fisher's tests will not be meaningful. If you've
entered observed values on one row (or column) and expected values on
another, you do not have a contingency table, and should use a separate
analysis™** designed for those kind of data.
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v Does your table contain only data?

The chi-square test is not only used for analyzing contingency tables. It
can also be used to compare the observed number of subjects in each
category with the number you expect to see based on theory. Prism
cannot do this kind of chi-square test. It is not correct to enter observed
values in one column and expected in another. When analyzing a
contingency table with the chi-square test, Prism generates the expected
values from the data - you do not enter them.

‘/Are the rows or columns arranged in a natural order?

If your table has two columns and more than two rows (or two rows and
more than two columns), Prism will perform the chi-square test for trend
as well as the regular chi-square test. The results of the test for trend
will only be meaningful if the rows (or columns) are arranged in a natural
order, such as age, duration, or time. Otherwise, ignore the results of
the chi-square test for trend and only consider the results of the regular
chi-square test.

4.14.13 Survival analysis

Survival curves plot the results of experiments where the outcome is
time until death. Usually you wish to compare the survival of two or
more groups. Read elsewhere to learn about interpreting survival
curves™, and comparing two™** (or more than two"™*) survival curves.

‘/Are the subjects independent?

Factors that influence survival should either affect all subjects in a group
or just one subject. If the survival of several subjects is linked, then you
don't have independent observations. For example, if the study pools
data from two hospitals, the subjects are not independent, as it is
possible that subjects from one hospital have different average survival
times than subjects from another. You could alter the median survival
curve by choosing more subjects from one hospital and fewer from the
other. To analyze these data, use Cox proportional hazards regression,
which Prism cannot perform.
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‘/Were the entry criteria consistent?

Typically, subjects are enrolled over a period of months or years. In
these studies, it is important that the starting criteria don't change
during the enrollment period. Imagine a cancer survival curve starting
from the date that the first metastasis was detected. What would happen
if improved diagnostic technology detected metastases earlier? Even
with no change in therapy or in the natural history of the disease,
survival time will apparently increase. Here's why: Patients die at the
same age they otherwise would, but are diagnosed when they are
younger, and so live longer with the diagnosis. (That is why airlines have
improved their “on-time departure” rates. They used to close the doors
at the scheduled departure time. Now they close the doors ten minutes
before the “scheduled departure time”. This means that the doors can
close ten minutes later than planned, yet still be "on time". It's not
surprising that “on-time departure” rates have improved.)

‘/Was the end point defined consistently?

If the curve is plotting time to death, then there can be ambiguity about
which deaths to count. In a cancer trial, for example, what happens to
subjects who die in a car accident? Some investigators count these as
deaths; others count them as censored subjects. Both approaches can
be justified, but the approach should be decided before the study begins.
If there is any ambiguity about which deaths to count, the decision
should be made by someone who doesn't know which patient is in which
treatment group.

If the curve plots time to an event other than death, it is crucial that the
event be assessed consistently throughout the study.

\/Is time of censoring unrelated to survival?

The survival analysis is only valid when the survival times of censored
patients are identical (on average) to the survival of subjects who stayed
with the study. If a large fraction of subjects are censored, the validity of
this assumption is critical to the integrity of the results. There is no
reason to doubt that assumption for patients still alive at the end of the
study. When patients drop out of the study, you should ask whether the
reason could affect survival. A survival curve would be misleading, for
example, if many patients quit the study because they were too sick to
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come to clinic, or because they stopped taking medication because they
felt well.

v Does average survival stay constant during the course of the study?

Many survival studies enroll subjects over a period of several years. The
analysis is only meaningful if you can assume that the average survival
of the first few patients is not different than the average survival of the
last few subjects. If the nature of the disease or the treatment changes
during the study, the results will be difficult to interpret.

‘/Is the assumption of proportional hazards reasonable?

The logrank test is only strictly valid when the survival curves have
proportional hazards. This means that the rate of dying in one group is a
constant fraction of the rate of dying in the other group. This assumption
has proven to be reasonable for many situations. It would not be
reasonable, for example, if you are comparing a medical therapy with a
risky surgical therapy. At early times, the death rate might be much
higher in the surgical group. At later times, the death rate might be
greater in the medical group. Since the hazard ratio is not consistent
over time (the assumption of proportional hazards is not reasonable),
these data should not be analyzed with a logrank test.

‘/Were the treatment groups defined before data collection began?

It is not valid to divide a single group of patients (all treated the same)
into two groups based on whether or not they responded to treatment
(tumor got smaller, lab tests got better). By definition, the responders
must have lived long enough to see the response. And they may have
lived longer anyway, regardless of treatment. When you compare
groups, the groups must be defined before data collection begins.

4.14.14 QOutliers

If the outlier test identifies one or more values as being an outlier, ask
yourself these questions:

‘/Was the outlier value entered into the computer incorrectly?

If the "outlier" is in fact a typo, fix it. It is always worth going back to the
original data source, and checking that outlier value entered into Prism is
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actually the value you obtained from the experiment. If the value was the
result of calculations, check for math errors.

‘/Is the outlier value scientifically impossible?

Of course you should remove outliers from your data when the value is
completely impossible. Examples include a negative weight, or an age (of
a person) that exceed 150 years. Those are clearly errors, and leaving
erroneous values in the analysis would lead to nonsense results.

‘/Is the assumption of a Gaussian distribution dubious?

Both the Grubbs' and ROUT tests assume that all the values are sampled
from a Gaussian distribution, with the possible exception of one (or a few)
outliers from a different distribution. If the underlying distribution is not
Gaussian, then the results of the outlier test is unreliable. It is especially
important to beware of lognormal distributions™. If the data are sampled
from a lognormal distribution, you expect to find some very high values
which can easily be mistaken for outliers. Removing these values would
be a mistake.

‘/Is the outlier value potentially scientifically interesting?

If each value is from a different animal or person, identifying an outlier
might be important. Just because a value is not from the same Gaussian
distribution as the rest doesn't mean it should be ignored. You may have
discovered a polymorphism in a gene. Or maybe a new clinical syndrome.
Don't throw out the data as an outlier until first thinking about whether
the finding is potentially scientifically interesting.

v Does your lab notebook indicate any sort of experimental problem with
that value

It is easier to justify removing a value from the data set when it is not

only tagged as an "outlier" by an outlier test, but you also recorded
problems with that value when the experiment was performed.

‘/ Do you have a policy on when to remove outliers?

Ideally, removing an outlier should not be an ad hoc decision. You should
follow a policy, and apply that policy consistently.
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‘/If you are looking for two or more outliers, could masking be a
problem?

Masking®**is the name given to the problem where the presence of two
(or more) outliers, can make it harder to find even a single outlier.

If you answered no to all those questions...

If you've answered no to all the questions above, there are two
possibilities:

e The suspect value came from the same Gaussian population as the
other values. You just happened to collect a value from one of the tails
of that distribution.

e The suspect value came from a different distribution than the rest.
Perhaps it was due to a mistake, such as bad pipetting, voltage spike,
holes in filters, etc.

If you knew the first possibility was the case, you would keep the value in
your analyses. Removing it would be a mistake.

If you knew the second possibility was the case, you would remove it,
since including an erroneous value in your analyses will give invalid
results.

The problem, of course, is that you can never know for sure which of
these possibilities is correct. An outlier test cannot answer that question
for sure. Ideally, you should create a lab policy for how to deal with such
data, and follow it consistently.

If you don't have a lab policy on removing outliers, here is suggestion:
Analyze your data both with and without the suspected outlier. If the
results are similar either way, you've got a clear conclusion. If the results
are very different, then you are stuck. Without a consistent policy on
when you remove outliers, you are likely to only remove them when it
helps push the data towards the results you want.

5 STATISTICS WITH PRISM 8
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5.1 Getting started with statistics with Prism

Links to places to get started.

5.1.1 What happened to the "Column statistics" analysis?

Before Prism 8, there was one analysis called "Column Statistics". Its
functions have now been divided into three analyses, all new with Prism
8:

e Descriptive statistics®™

e Normality and lognormality tests®**

e One-sample t test and Wilcoxon test?**

If you open a file created with an earlier version of Prism that used the
Column Statistics analysis, its results will be fine in Prism 8. You'll be able
to bring up the dialog and inspect and change the choices. But for new
files, you won't be able to use that older, overloaded analysis, and instead
should use one or more of the new analyses.
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5.1.2 Statistical analyses with Prism
Key concepts: Statistical analyses with Prism

e To analyze data, start from a data table (or graph, or green results
table), and click the Analyze button.

e Prism ighores any selection you have made on the data table. If you
want to analyze only certain data sets, you can choose that on the
Analyze Data dialog.

e Prism remembers the links between data, analyses and graphs. If you
change (or replace) the data, the analyses and graphs will update
automatically.

e The best way to learn about analyses is to choose tutorial data sets.

From the User Guide

How to analyze data with Prism

Creating chains of analyses

Changing an analysis

Frozen and orphaned analysis results

Excluding data points from an analysis

Embedding results on a graph

Hooking to analysis and info constants

Color coding key results

Simulating data and Monte Carlo analyses

Prism can plot and analyze simulated data, as well as data you enter.
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Simulating a data table

Using a script to simulate many data sets

Key concepts: Monte Carlo analyses

Monte Carlo example: Accuracy of confidence intervals

Transforming, normalizing, etc.

Key concept -- Manipulating data

Transform data

Transforming concentrations

Remove baseline

Normalize

Transpose rows and columns

Prune rows

Fraction of total

5.1.3 Guided examples: Statistical analyses

Guided examples

These examples will guide you through most of Prism's statistical analyses.

Descriptive statistics

Descriptive statistics®™

Frequency distribution®**

Compare two groups

Unpaired t test from raw data®*”

Paired t test?™

Mann-Whitney test"*
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Wilcoxon matched pairs test?*

Categorical outcomes

Contingency table analysis®*”

Survival analysis®*

Diagnostic lab tests

ROC curvebl®™

Bland-Altman plot®®

Analysis checklists

After completing each analysis, click the Analysis checklist button in the
Interpret section of the Prism toolbar to review a list of questions that will
help you interpret the results.

Interpret

'

Here are links to a few of the analysis checklists, to view as examples.

Analysis checklist: Unpaired t test?*
[ 192

Analysis checklist: Survival analysis

Analysis checklist: Repeated measures two-way ANOVADP*™

5.2  Descriptive statistics
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This section explains how to analyze columns of
numbers to compute descriptive statistics,
compare the mean or median to a hypothetical

value, and test for normality

How to: Column statistics®™

Analysis checklist: Column statistics?*®

Interpreting results: Mean, geometric mean and median®™

Interpreting results: Quartiles and the interquartile range®*”

Interpreting results: SD, SEM, variance and coefficient of
variation (CV)b**

Interpreting results: Skewness and kurtosis?®*

Interpreting results: One-sample t test?™

Interpreting results: Wilcoxon signed rank test®*

Interpreting results: Normality tests?**

5.2.1 How to: Descriptive statistics
Entering data for descriptive statistics

Descriptive statistics by column are most often used with data entered on
data tables formatted for Column data. If you want to experiment, create
a Column data table and choose the sample data set: One-way ANOVA,
ordinary.

You can also choose the descriptive statistics analysis from data entered
onto XY or Grouped data tables.
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Choose the descriptive statistics analysis

Click ' =#m@2  and choose Descriptive statistics from the list of analyses
for column data.

Parameters: Descriptive Statistics X
Basics
Minimum and maximum Mean, SD, SEM
[JQuartiles (Median, 25th and 75th percentile) [] column sum
Advanced
[ Coefficient of variation [ Geometric mean
[[] skewness and kurtosis []Harmonic mean
[JPercentile ' 90 - []Quadratic mean

Confidence intervals

[]ct of the mean
[]cI of geometric mean
]t of median

Confidence level: 95%
Subcolumns

Average the replicates in each row, and then perform the calculation for each column
Perform the calculation for each subcolumn separately

Treat all the values in all the subcolumns as one set of data
Output

Show: |4 = significant digits.

[ ] Make these choices be the default for future analyses.

Learn Cancel

Prism's descriptive statistics analysis computes descriptive statistics of
each data set. Tests for normality, and testing whether the mean of a
column is different than a hypothetical value, are now in separate
analyses (all were together in one analysis through Prism 7).

Choose analysis options

Basics

Learn more about quartiles®®, median®*, SD®*, and SEMB*.
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Advanced

Learn more about the coefficient of variation®*, skewness and kurtosis®*,

geometric mean®®, harmonic mean, and quadratic mean.

214

Confidence intervals

Choose to report the CI of the mean, the geometric mean or the median.

Subcolumns

The choices for subcolumn will not be available when you analyze data
entered on table formatted for column data, which have no subcolumns. If
your data are on a table formatted for XY or grouped data with
subcolumns, choose to compute column statistics for each subcolumn
individually or to average the subcolumns and compute columns statistics

on the means.

If the data table has subcolumns for entry of mean and SD (or SEM)
values, Prism calculates column statistics for the means, and ignores the
SD or SEM values you entered.

5.2.2 Analysis checklist: Descriptive statistics

Value
Minimum

25th percentile®™

Median®**

75th percentile®®

Maximum

Meanl®

Standard Deviation®”

Meaning

The smallest value.

25% of values are lower than this.

Half the values are lower; half are higher.
75% of values are lower than this.

The largest value.

The average.

Quantifies variability or scatter.
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Value

Standard Error of
MeanbP*

959% confidence
interval®”

Coefficient of
variation®**

Geometric mean®*”

Harmonic mean®®*

Quadratic mean®*

SkewnessP™

Kurtosis®"**

Meaning

Quantifies how precisely the mean is known.

Given some assumptions, there is a 95%
chance that this range includes the true
overall mean.

The standard deviation divided by the mean.

Compute the logarithm of all values,
compute the mean of the logarithms, and
then take the antilog of that mean. It is a
better measure of central tendency when
data follow a lognormal distribution (long
tail).

Compute the reciprocal of all values,
compute the mean of the reciprocals, and
then take the reciprocal of that mean.

Compute the square of all values, compute
the mean of the squares, and then take the
square root of that mean.

Quantifies how symmetrical the distribution
is. A distribution that is symmetrical has a
skewness of 0.

Quantifies whether the tails of the data
distribution matches the Gaussian
distribution. A Gaussian distribution has a
kurtosis of 0.
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5.2.3

Interpreting results: Quartiles and the interquartile range
What are percentiles?

Percentiles are useful for giving the relative standing of an individual in a
group. Percentiles are essentially normalized ranks. The 80th percentile is
a value where you'll find 80% of the values lower and 20% of the values
higher. Percentiles are expressed in the same units as the data.

The median

The median is the 50th percentile. Half the values are higher; half are
lower. Rank the values from low to high. If there are an odd number of
points, the median is the one in the middle. If there are an even humber
of points, the median is the average of the two middle values.

Quartiles

Quartiles divide the data into four groups, each containing an equal
number of values. Quartiles are divided by the 25th, 50th, and 75th
percentile, also called the first, second and third quartile. One quarter of
the values are less than or equal to the 25th percentile. Three quarters of
the values are less than or equal to the 75th percentile.

Interquartile range

The difference between the 75th and 25th percentile is called the
interquartile range. It is a useful way to quantify scatter.

Computing percentiles

Computing a percentile other than the median is not straightforward.
Believe it or not, there are at least eight different methods to compute
percentiles. Here is another explanation of different methods (scroll down
to "plotting positions").

Prism computes percentile values by first evaluating this expression:
R=P* (n+ 1)/100

P is the desired percentile (25 or 75 for quartiles) and n is the number of

values in the data set. The result is the rank that corresponds to the

percentile value. If there are 68 values, the 25th percentile corresponds
to a rank equal to:

0.25 * 69 = 17.25
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5.24

Prism (since version 5) interpolates one quarter of the way between the
17th and 18th value. This is the method most commonly used in stats
programs. It is definition 6 in Hyndman and Fan (1) . With this method,
the percentile of any point is k/(n+1), where k is the rank (starting at 1)
and n is the sample size. This is not the same way that Excel computes
percentiles, so percentiles computed by Prism and Excel will not match
when sample sizes are small.

Beware of percentiles of tiny data sets. Consider this example: What is
the 90th percentile of six values? Using the formula above, R equals 6.3.
Since the largest value has a rank of 6, it is not really possible to compute
a 90th percentile. Prism reports the largest value as the 90th percentile.
A similar problem occurs if you try to compute the 10th percentile of six
values. R equals 0.7, but the lowest value has a rank of 1. Prism reports
the lowest value as the 10th percentile.

Note that there is no ambiguity about how to compute the median. All
definitions of percentiles lead to the same result for the median.

Five-number summary

The term five-number summary is used to describe a list of five values:

the minimum, the 25th percentile, the median, the 75th percentile, and

the maximum. These are the same values plotted in a box-and-whiskers
plots (when the whiskers extend to the minimum and maximum; Prism

offers other ways to define the whiskers).

Reference

1. R.J. and Y. Fan, Sample quantiles in statistical packages, The
American Statistician, 50: 361-365, 1996

Interpreting results: Mean, SD, SEM
Mean

The mean is the average. Add up the values, and divide by the number of
values.

Standard Deviation

The standard deviation®* (SD) quantifies variability. It is expressed in the
same units as the data. It is often abbreviated as s. Prism computes the
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SD using a denominator of n-1, so computes what is sometimes called the
sample SD rather than the population SDP*.

Standard Error of the Mean and Confidence Interval of the mean

The Standard Error of the Mean (SEM) quantifies the precision of the
mean. It is a measure of how far your sample mean is likely to be from
the true population mean. It is expressed in the same units as the data.

Lear% about the difference between SD and SEMP® and when to use
each"®.

The SEM is used to compute the confidence interval of the mean, and this
CI is easier to interpret®®. If the data are sampled from a Gaussian
distribution, you can be 95% certain that the interval encloses the
population mean.

Variance

The variance equals the SD squared, and therefore is expressed in the
units of the data squared. Mathematicians like to think about variances
because they can partition variances into different components -- the
basis of ANOVA. In contrast, it is not correct to partition the SD into
components. Because variance units are usually impossible to think
about, most scientists avoid reporting the variance of data, and stick to
standard deviations. Prism does not report the variance.

5.2.5 Interpreting results: Median and its ClI

The median is the 50th percentile. Half the values are greater than (or
equal to ) the median and half are smaller.

The confidence interval of the median is computed by a standard method
explained well in Zar (pages 548-549), based on the binomial distribution.

Four notes:

e The confidence interval of the median is not symmetrical around the
median.
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e You do not need to assume that the population distribution is
symmetrical in order to interpret the confidence interval.

e The confidence interval begins and ends with values in the data set.
No interpolation.

e Even if you ask for 95% confidence level, the actual confidence level

will usually be different (especially with small samples) and Prism
reports this.

95% Cl of median
Actual confidence level 96.86%
Lower confidence limit 23
Upper confidence limit 54,

J.H. Zar, Biostatistical Analysis, Fifth edition 2010, ISBN: 0131008463.

5.2.6 Interpreting results: Coefficient of Variation

The coefficient of variation (CV), also known as “relative variability”,
equals the standard deviation divided by the mean. It can be expressed
either as a fraction or a percent.

What is the advantage of reporting CV? The only advantage is that it lets
you compare the scatter of variables expressed in different units. It
wouldn't make sense to compare the SD of blood pressure with the SD of
pulse rate, but it might make sense to compare the two CV values.

Notes:

¢ It only makes sense to report CV for variables, such as mass or enzyme
activity, where “0.0” is defined to really mean zero. A weight of zero
means no weight. An enzyme activity of zero means no enzyme activity.
These are called ratio variables. It can be helpful to express variation of
ratio variables (weights or enzyme activities...) as the CV. In contrast, a
temperature of “"0.0” does not mean zero temperature (unless measured
in degrees Kelvin), so it would be meaningless to report a CV of values
expressed as degrees C.

e It never makes sense to calculate the CV of a variable expressed as a
logarithm because the definition of zero is arbitrary. The logarithm of 1
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equals 0, so the log will equal zero whenever the actual value equals 1.
By changing units, you'll redefine 1.0 in the original scale, so redefine
zero on the log scale, and so redefine the CV. The CV of a logarithm is,
therefore, meaningless. For example, it makes no sense to compute the
CV of a set of pH values. pH is measured on a log scale (it is the
negative logarithm of the concentration of hydrogen ions). A pH of 0.0
does not mean 'no pH', and certainly doesn't mean 'no acidity' (quite
the opposite). Therefore it makes no sense to compute the CV of pH.

e When computing the CV, Prism computes the SD as the sample SD
(using n-1 as the denominator) not the population SD (using n in the
denominator).

5.2.7 Interpreting results: Geometric mean and its CI
How Prism computes the geometric mean

Compute the logarithm of all values, compute the mean of the logarithms,
and then take the antilog. Prism uses base 10 (common) logarithms, and
then takes ten to the power of the mean of the logarithms to get the
geometric mean. This is equivalent to multiplying all the values together
and taking that product to the 1/n power, where n is the number of
values.

Geometric means are often used to average ratios.

It makes sense to use the geometric mean when the set of logarithms of
the data form a symmetrical approximately Gaussian distribution.

How Prism computes the geometric SD

First, transform all the values to logarithms, compute the sample SD of
those log values, and then take the antilogarithm of that SD. Prism uses
base 10 (common) logarithms, and then takes ten to the power of the
mean of the logarithms to get the geometric mean.

The geometric SD factor has no units. It is a unitless ratio.
It makes no sense to add the geometric SD to the geometric mean (or

any other value), and makes equally no sense to ever subtract the
geometric SD from the geometric mean. The geometric SD is a value you
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always multiply or divide by. The range from (the geometric mean divided
by the geometric SD factor) to (the geometric mean multiplied by the
geometric SD factor) will contain about two thirds of the values if the data
are sampled from a lognormal distribution. Similarly, the range from (the
mean minus the SD) to (the mean plus the SD) will contain about two
thirds of the values when data are sampled from a Gaussian distribution.

More about the geometric SD.B*

How to report the geometric mean and SD

While it is common to see a data sampled from a Gaussian distribution
reported as, "The mean is 3.2 £ 1.2 (SD)", itis currently rare to report
data sampled from a lognormal distribution reported as, "The geometric
mean is 4.3 *+ 1.14." But that kind of reporting makes sense. Instead of
using a symbol meaning "plus or minus" which makes sense for data
sampled from a Gaussian distribution, use symbols meaning "times or
divided by" when reporting results from data sampled from a lognormal
distribution.

Example

Data 600 600 1000

126 500 o 500 ——
a01.2

79 400 - 4004 1004

a7 ———

831 300 4 300 4

19.0 -1
1005 | 2001 200 - 10+ —ls
2455 100 - Mean 1004

Geo. Mean _—
0 Y 0 1 r

The example above shows eight values (so you can do the calculations
yourself, if you want to). The geometric mean is 49.55 and the geometric
SD factor is 5.15. The left graph shows the data with lines denoting the
mean and geometric mean. The middle graph shows how Prism plots the
geometric mean and geometric SD. The upper error bar extends up to the
geometric mean times the geometric SD factor (49.55 * 5.15 = 255.2).
The lower error bars extends down to the geometric mean divided by the
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geometric SD factor (49.55/ 5.15 = 9.62). The right graph shows the
data, the geometric mean, and the geometric SD plotted on a logarithmic
axis. The log SD error bars appear visually symmetrical on a log axis,
even though numerically they are very asymmetrical.

5.2.8 Interpreting results: Skewness
Key facts about skewness
Skewness quantifies how symmetrical the distribution is.
e A symmetrical distribution has a skewness of zero.

e An asymmetrical distribution with a long tail to the right (higher values)
has a positive skew.

e An asymmetrical distribution with a long tail to the left (lower values)
has a negative skew.

e The skewness is unitless.

e Any threshold or rule of thumb is arbitrary, but here is one: If the
skewness is greater than 1.0 (or less than -1.0), the skewness is
substantial and the distribution is far from symmetrical.

How skewness is computed

Skewness has been defined in multiple ways. The steps below explain the
method used by Prism, called g1 (the most common method). It is
identical to the skew() function in Excel.

1. We want to know about symmetry around the sample mean. So the
first step is to subtract the sample mean from each value, The result
will be positive for values greater than the mean, negative for values
that are smaller than the mean, and zero for values that exactly equal
the mean.

2. To compute a unitless measures of skewness, divide each of the
differences computed in step 1 by the standard deviation of the values.
These ratios (the difference between each value and the mean divided
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5.2.9

by the standard deviation) are called z ratios. By definition, the
average of these values is zero and their standard deviation is 1.

. For each value, compute z3. Note that cubing values preserves the

sign. The cube of a positive value is still positive, and the cube of a
negative value is still negative.

4. Average the list of z3 by dividing the sum of those values by n-1,

where n is the number of values in the sample. If the distribution is
symmetrical, the positive and negative values will balance each other,
and the average will be close to zero. If the distribution is not
symmetrical, the average will be positive if the distribution is skewed
to the right, and negative if skewed to the left. Why n-1 rather than n?
For the same reason®* that n-1 is used when computing the standard
deviation.

. Correct for bias. For reasons that I do not really understand, that

average computed in step 4 is biased with small samples -- its absolute
value is smaller than it should be. Correct for the bias by multiplying
the mean of z3 by the ratio n/(n-2). This correction increases the value
if the skewness is positive, and makes the value more negative if the
skewness is negative. With large samples, this correction is trivial. But
with small samples, the correction is substantial.

More on skewness and kurtosis

Interpreting results: Kurtosis
Kurtosis

Kurtosis quantifies whether the tails of the data distribution matches the
Gaussian distribution.

e A Gaussian distribution has a kurtosis of 0.

e A distribution with fewer values in the tails than a Gaussian distribution

has a negative kurtosis.

¢ A distribution with more values in the tails (or values further out in the

tails) than a Gaussian distribution has a positive kurtosis.
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e Kurtosis has no units.

e Although it is commonly thought to measure the shape of the peak,
kurtosis actually tells you virtually nothing about the shape of the peak.
Its only unambiguous interpretation is in terms of the values in the tail.
Essentially it measures the presence of outliers (1).

e The value that Prism reports is sometimes called the excess kurtosis
since the expected kurtosis for a Gaussian distribution is 0.0.

e An alternative definition of kurtosis is computed by adding 3 to the
value reported by Prism. With this definition, a Gaussian distribution is
expected to have a kurtosis of 3.0.

How Kurtosis is computed

1. Subtract the sample mean from each value, The result will be positive
for values greater than the mean, negative for values that are smaller
than the mean, and zero for values that exactly equal the mean.

2. Divide each of the differences computed in step 1 by the standard
deviation of the values. These ratios (the difference between each
value and the mean divided by the standard deviation) are called z
ratios. By definition, the average of these values is zero and their
standard deviation is 1.

3. For each value, compute z*. In case that doesn't render well, that is z
to the fourth power. All these values are positive.

4. Average that list of values by dividing the sum of those values by n-1,
where n is the number of values in the sample. Why n-1 rather than n?
For the same reason®* that n-1 is used when computing the standard
deviation.

5. With a Gaussian distribution, you expect that average to equal 3.
Therefore, subtract 3 from that average. Gaussian data are expected to
have a kurtosis of 0. This value (after subtracting 3) is sometimes
called the excess kurtosis.
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Why don't values in the middle of the distribution affect the kurtosis very
much?

Because the z values are taken to the fourth power, only large z values
(so only values far from the mean) have a big impact on the kurtosis. If
one value has a z value of 1 and another has a z value of 2, the second
value will have 16 times more impact on the kurtosis (because 2 to the
fourth power is 16). If one value has a z value of 1 and another has a z
value of 3 (so is three times further from the mean), the second value will
have 81 times more impact on the kurtosis (because 3 to the fourth
power is 81). Accordingly, values near the mean (especially those less
than one SD from the mean) have very little impact on the kurtosis, while
values far from the mean have a huge impact. For this reason, the
kurtosis does not quantify peakedness and does not really quantify the
shape of the bulk of the distribution. Rather kurtosis quantifies the overall
impact of points far from the mean.

Reference

1. Westfall, P. H. (2014). Kurtosis as Peakedness, 1905-2014. R.I.P.
The American Statistician, 68(3), 191-195.

5.2.10 Harmonic, quadratic, trimmed, and winsorized mean
Harmonic mean

Prism computes the harmonic mean and its confidence interval by first
transforming all the values to their reciprocals, and then computing the
mean of those reciprocals and the CI of that mean. The harmonic mean is
the reciprocal of that mean. If the values are all positive, larger numbers
effectively get less weight than lower humbers. The harmonic means is
most often used to find the average of a set of rates or velocities.

It makes sense to use the harmonic mean when the set of reciprocals of
the data form a symmetrical approximately Gaussian distribution.

Quadratic mean

Prism computes the quadratic mean and its confidence interval by first
transforming all the values to their square (value multiplied by itself), and
then computing the mean of those squared values and the CI of that
mean. The quadratic mean is the square root of that mean. The quadratic
mean is also called the root mean square.
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It makes sense to use the quadratic mean when the set of squares of the
data form a symmetrical approximately Gaussian distribution.

Trimmed and Winsorized means

The idea of trimmed or Winsorized means is to not let the largest and
smallest values have much impact. Before calculating a trimmed or
Winsorized mean, you first have to choose how many of the largest and
smallest values to ignore or down weight. If you set K to 1, the largest
and smallest values are treated differently. If you set K to 2, then the two
largest and two smallest values are treated differently. K must be set in
advance. Sometimes K is set to 1, other times to some small fraction of
the number of values, so K is larger when you have lots of data.

To compute a trimmed mean, simply delete the K smallest and K largest
observations, and compute the mean of the remaining data.

To compute a Winsorized mean, replace the K smallest values with the
value at the K+1 position, and replace the k largest values with the value
at the N-K-1 position. Then take the mean of the data. .

The advantage of trimmed and Winsorized means is that they are not
influenced by one (or a few) very high or low values. Prism does not
compute these values.

Mode

The mode is the value that occurs most commonly. It is not useful with
measured values assessed with at least several digits of accuracy, as
most values will be unique. It can be useful with variables that can only
have integer values. While the mode is often included in lists like this, the
mode doesn't always assess the center of a distribution. Imagine a
medical survey where one of the questions is "How many times have you
had surgery?" In many populations, the most common answer will be
zero, so that is the mode. In this case, some values will be higher than
the mode, but none lower, so the mode is not a way to quantify the
center of the distribution.

53 Row statistics
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5.3.1

5.3.2

Overview: Side-by-side replicates

When entering data into tables formatted for XY or Grouped data,
replicates go into side-by-side subcolumns. Prism then can plot these
individually, or plot mean and error bar.

You can also format the table to enter mean, SD or SEM, and N. This is
useful if you have already averaged the data in another program or if you
have more than 52 replicates. Otherwise, it is best to enter the raw data
into Prism, so you can plot every replicate.

Prism can take your raw data, and create graphs with mean (or median)
and error bars (defined in several ways). There is no need to run an
analysis to compute the SD or SEM. But if you want to see the descriptive
stats for each set of replicates, use the Row Means and Totals®*

analysis.

Row means and totals

Parameters: Row Means/Totals

Scope of caktulshion:
() Caficuilate: o Rokal/ e for entine dsla Lable,
(%) Calendate & Nobalfrsan for sach dats sa1.

Calcidate

() Fows totals

(2! Rove means with SO
(%) Feow means with SEM
() Riowe means with 5TV
3 Row madians wih range

Newr graph
[ Create & new guaph of e resuls

[HopMe Decide| | Cancel | [ 0k ]

Calculate a total/ mean for each data set

If you enter data onto XY or two-way tables with replicate Y values in
subcolumns, and want to view a table of mean and SD (or SEM) values,
click Analyze and choose to do a built-in analysis. Then choose Row
means/totals, and choose one total/mean for each data set.

Note that you rarely need this analysis. Prism will automatically create
graphs with the mean and SD (or SEM). You don't have to choose any
analyses to make these graphs. Prism computes the error bars
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automatically. Use settings on the Format Graph dialog (double-click on
any symbol to see it) to plot individual points or to choose SD, SEM, 95%
CI or range error bars. The only purpose of this analysis is if you want to
see the SD or SEM values.

Calculate a total/mean for the entire data table

This choice is used rarely, but it helps you consolidate a larger table into
a single data set.

If the data were entered onto a single subcolumn for each data set, then
there is no ambiguity.

But what if you entered data on a table with subcolumns? In this case,
the calculated total/mean values are based on the mean value of each
data set for corresponding row. For example, let's calculate "Row means
with SD" for three datasets with 3, 2 and 3 replicates in each. Here are
the data for the first row.

Data set A (2, 3, 4)
Data set B: (4, 6)
Data set C (7, 8, 9)

Prism will first compute the mean values for each data set, which are 3, 5
and 8. It then computes the grand mean of those three values (and their
standard deviation) so the results are Mean = 5.333, SD = 2.517, N = 3.

If Prism simply looked at those data as eight independent values, the
mean would be 5.375, but since the values in different data sets are
unlikely to be independent, Prism does not do this calculation.

Note:
e When Prism computes the grand mean, it does not account for the fact
that data sets A and C are in triplicate, while data set B is only in

duplicate.

¢ If you entered your data as mean, n and SD or SEM, these calculations
use only the mean value you entered and ignore n and SD or SEM.
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5.4  Frequency Distributions

5.4.1 Visualizing scatter and testing for normality without a frequency distribution
Viewing data distributions

Before creating a frequency distribution, think about whether you actually
need to create one.

In many cases, plotting a column scatter graph is all you need to do to
see the distribution of data.

e The graph on the left is a column scatter plot (with line drawn at the
mean) made from the "Frequency distribution” sample data.

e The graph in the middle is a box-and-whiskers graph of the same data,
showing the values lower than the 2.5th percentile and greater than the
97.5 th percentile as circles. Note that Prism offers several choices for
how to define the whiskers in this kind of plot.

e The graph on the right is a violin plot, new with Prism 8. It shows the
median and quartiles as the box-and-whisker plot does, but also shows
a smoothed frequency distribution to give you a sense for how the data
are distributed.

All three graphs were created by Prism directly from the column data
table, with no analysis needed.
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Testing for normality

Prism can test for normality®*® as part of the column statistics analysis.
You don't have to create a frequency distribution, and then fit a Gaussian
distribution.

5.4.2 How to: Frequency distribution
1. Enter data
Choose a Column table, and a column scatter graph. If you are not ready
to enter your own data, choose the sample data set: Frequency

distribution data and histogram.

2. Choose the analysis

Click Analyze and then choose Frequency distribution from the list of
analyses for Column data.

Parameters: Frequency Cistribution s

Cieate

(%) Frequency distribution

() Cusmnalative frequendcy distibution
Tabulate

(=) Humber of dala poiits

() Flelative nequencess as fraction
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Bin width

() Choots aulomaticaly

O Bin width | |[5)
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(3 Auks (3 Auke
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Replicates

Hew graph
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3. Choose analysis options

Cumulative?

In a frequency distribution, each bin contains the number of values that
lie within the range of values that define the bin. In a cumulative
distribution, each bin contains the number of values that fall within or
below that bin. By definition, the last bin contains the total number of
values. The graph below shows a frequency distribution on the left, and a
cumulative distribution of the same data on the right, both plotting the
number of values in each bin.
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The main advantage of cumulative distributions is that you don't need to
decide on a bin width. Instead, you can tabulate the exact cumulative
distribution as shown below. The data set had 250 values, so this exact
cumulative distribution has 250 points, making it a bit ragged. When you
choose to tabulate a cumulative frequency distributions as percentages
rather than fractions, those percentages are really percentiles and the
resulting graph is sometimes called a percentile plot.

Cumulative Distribution
(Percentage)

f T T T T
40 &0 a0 100 120 140 160

Value
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Relative or absolute frequencies?

Select Relative frequencies to determine the fraction (or percent) of
values in each bin, rather than the actual number of values in each bin.
For example, if 15 of 45 values fall into a bin, the relative frequency is
0.33 or 33%.

If you choose both cumulative and relative frequencies, you can plot the
distribution using a probabilities axis. When graphed this way, a Gaussian
distribution is linear.

Bin width

If you chose a cumulative frequency distributions, we suggest that you
choose to create an exact distribution. In this case, you don't choose a
bin width as each value is plotted individually.

To create an ordinary frequency distribution, you must decide on a bin
width. If the bin width is too large, there will only be a few bins, so you
will not get a good sense of how the values distribute. If the bin width is
too low, many bins might have only a few values (or none) and so the
number of values in adjacent bins can randomly fluctuate so much that
you will not get a sense of how the data are distributed.

How many bins do you need? Partly it depends on your goals. And partly
it depends on sample size. If you have a large sample, you can have more
bins and still have a smooth frequency distribution. One rule of thumb is
aim for a number of bins equal to the log base 2 of sample size. Prism
uses this as one of its two goals when it generates an automatic bin width
(the other goal is to make the bin width be a round number).

The figures below show the same data with three different bin widths. The
graph in the middle displays the distribution of the data. The one on the
left has too little detail, while the one on the right has too much detail.
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Bin range

In addition to deciding on the bin width, which controls the humber of
bins, you can also choose the center of the first bin. This can be
important. Imagine that your data are percentages, running from 0 to
100. There is no possibility of a value that is less than 0 (negative) or
greater than 100. Let's say you want the bin width to be 10, to make 10
bins. If the first bin is centered at 0, it will contain values between -5 and
5, the next bin will contain values between 5 and 15, the next between
15 and 25, etc. Since negative values are impossible, the first bin actually
includes values only between 0 and 5, so its effective bin width is half the
other bin widths. Also note, there are eleven bins that contain data, not

ten.

If you instead make the first bin centered at 5, it will contain values
between 0 and 10, the next bin contains values from 10 to 20, etc. Now,
all bins truly contain the same range of values, and all the data are
contained within ten bins.

A point on the border goes with the bin holding the larger values. So if
one bin goes from 3.5 to 4.5 and the next from 4.5 to 5.5, a value of 4.5
ends up in that second bin (from 4.5 to 5.5).

Replicates

If you entered replicate values, Prism can either place each replicate into
its appropriate bin, or average the replicates and only place the mean into
a bin.

All values too small to fit in the first bin are omitted from the analysis.
You can also enter an upper limit to omit larger values from the analysis.
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How to graph

See these examples®*.

. Prism can only make frequency distributions
-~ from numerical data. It can handle categorical
Ksz/ data, but only if the categories are entered as
values.

A
E“'

5.4.3 Graphing tips: Frequency distributions

At the bottom of the frequency distribution analysis dialog, you can
choose among several ways to graph the resulting data. These are all
shown below, using 'frequency distribution' sample data set.

Graphs of frequency distributions
If you don't create a cumulative distribution, Prism gives you three

choices illustrated below: XY graph with points, XY graph with spikes
(bars). or a bar graph
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The last two graphs look very similar, but the graph on the right is a bar
graph, while the one in the middle is an XY graph plotting bars or spikes
instead of symbols. The graph in the middle has X values so you can fit a
Gaussian distribution®* to it. The graph on the right has no X values (just
category names, which happen to be numbers), so it is not possible to fit
a curve.

The term histogram is used inconsistently. We use the term to mean a
graph of a frequency distribution which is usually a bar graph. Some
people use the term histogram to refer to any bar graph, even those that
don't plot frequency distributions.
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Graphs of cumulative frequency distributions

If you choose a cumulative frequency distribution that tabulates the
actual number of values (rather than fractions or percents), Prism can

only create one kind of graph:
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If you choose to tabulate the results as fractions or percentages, then
Prism also offers you (from the bottom part of the Parameters dialog for
frequency distributions) the choice of plotting on a probability axis. If
your data were drawn from a Gaussian distribution, they will appear
linear when the cumulative distribution is plotted on a probability axis.
Prism uses standard values to label the Y axis, and you cannot adjust

these. This graph is very similar to a Q-Q plot.
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5.4.4 Fitting a Gaussian distribution to a frequency distribution
Why fit a Gaussian distribution to your data?

Does your data follow a Gaussian distribution? One way to answer that
question is to perform a normality test®* on the raw data. Another
approach is to examine the frequency distribution or the cumulative
frequency distribution.

Fitting a Gaussian distribution

Prism can superimpose a frequency distribution over the histogram.
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Mumber of Values

Best-fit values
AREA 1014
S0 15.56
MEAN 100.2

50 70 90 110
Bin Center

Follow these steps:

130 150

1. In the frequency distribution dialog, choose to create the frequency
distribution (not a cumulative distribution). Also choose to plot the data

as an XY graph of histogram siikes.

Create

@ Frequency distribution

O Cumulative frequency distribution

Tabulate
@ Number of values
O Relative frequency (fractions)
O Relative frequency (percentages)

Bin range
Center of first bin: Center of last bin:
® Auto @ Auto
QO 10 s [ QO 9000

Bin width

@ Choose automatically

O Binwidth 1000

O No bins. Tabulate exact cumulative frequency
Replicates

O Bin each replicate

(® Bin only means

New graph
Create a new graph of the results
Graphtype | XY graph. Histogram spikes v
Learn Cancel

—

2. Go to the new graph.

3. Click Analyze, and choose nonlinear regression. On the first tab of the
model, choose the Gaussian family of equations and then the Gaussian
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equation. All the other choices on the nonlinear regression dialog can
be left to their default settings.

The results depend to some degree on which value you picked for bin
width, so we recommend fitting the cumulative distribution as explained
below.

Fitting a cumulative Gaussian distribution
Prism can superimpose a cumulative Gaussian distribution over a graph of

the cumulative distribution of the data. The cumulative Gaussian
distribution has a sigmoidal shape.
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Follow these steps.

1. In the frequency distribution dialog, choose to create the cumulative
frequency distribution. Also choose to plot the data as an XY graph of
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points.

Create

O Frequency distribution

@ Cumulative frequency distribution

Tabulate

@ Number of values

O Relative frequency (fractions)

O Relative frequency (percentages)
Bin range

Center of first bin: Center of last bin:

® Auto ® Auto

Qo = O 900 =
Bin width

@ Choose automatically

O Binwidth 1000

O No bins. Tabulate exact cumulative frequency
Replicates

(O Bin each replicate
@ Bin only means

New graph
Create a new graph of the results

Graphtype XY graph. Points ~

Learn Cancel

2. Go to the new graph.

3. Click Analyze, choose nonlinear regression, and choose the one of the
cumulative Gaussian models from the selection of Gaussian models.
Prism offers separate models to use for data expressed as percentages,
fractions or number of observations. With the last choice, you should
constrain N to a constant value equal to the number of values. You can
leave all other choices set to their default values.

The graph shown above the cumulative distribution of the sample data (in
percents) fit to the cumulative Gaussian curve. The observed distribution
is plotted with red circles and the fit distribution is a blue curve. The two

are superimposed, so hard to distinguish.

Plotting on a probability axis

Below, the same graph is plotted using a probability Y axis. To do this,
double-click on the Y axis to bring up the Format Axis dialog, drop down
the choices for scale in the upper right corner, and choose "Probability
(0..100%). The cumulative Gaussian distribution is linear when plotted on
probability axes. At the top right of the graph, the cumulative distribution
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is a bit higher than predicted by a Gaussian distribution. This discrepancy
is greatly exaggerated when you plot on a probability axis.
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5.5 Analyzing curves

5.5.1 Smoothing, differentiating and integrating curves

A single Prism analysis smooths a curve and/or converts a curve to its
derivative or integral.
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Finding the derivative or integral of a curve

The first derivative is the steepness of the curve at every X value. The
derivative is positive when the curve heads uphill and is negative when
the curve heads downhill. The derivative equals zero at peaks and
troughs in the curve. After calculating the numerical derivative, Prism can
smooth the results, if you choose.

The second derivative is the derivative of the derivative curve. The
second derivative equals zero at the inflection points of the curve.

The integral is the cumulative area between the curve and the line at
Y=0, or some other value you enter.

Notes:

e Prism cannot do symbolic algebra or calculus. If you give Prism a series
of XY points that define a curve, it can compute the numerical derivative
(or integral) from that series of points. But if you give Prism an
equation, it cannot compute a new equation that defines the derivative
or integral.
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e This analysis integrates a curve, resulting in another curve showing
cumulative area. Don't confuse with a separate Prism analysis that
computes a single value for the area under the curve®™™.

Smoothing a curve

If you import a curve from an instrument, you may wish to smooth the
data to improve the appearance of a graph. Since you lose data when you
smooth a curve, you should not smooth a curve prior to nonlinear
regression or other analyses. Smoothing is not a method of data analysis,
but is purely a way to create a more attractive graph.

Prism gives you two ways to adjust the smoothness of the curve. You
choose the number of neighboring points to average and the 'order' of the
smoothing polynomial. Since the only goal of smoothing is to make the
curve look better, you can simply try a few settings until you like the
appearance of the results. If the settings are too high, you lose some
peaks which get smoothed away. If the settings are too low, the curve is
not smooth enough. The right balance is subjective -- use trial and error.

The results table has fewer rows than the original data.

Don't analyze smoothed data

Smoothing a curve can be misleading. The whole idea is to reduce the
"fuzz" so you can see the actual trends. The problem is that you can see
"trends" that don't really exist. The three graphs in the upper row below
are simulated data. Each value is drawn from a Gaussian distribution with
a mean of 50 and a standard deviation of 10. Each value is independently
drawn from that distribution, without regard to the previous values. When
you inspect those three graphs, you see random scatter around a
horizontal line, which is exactly how the data were generated.
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The bottom three graphs above show the same data after smoothing
(averaging 10 values on each side, and using a second order smoothing
polynomial). When you look at these graphs, you see trends. The first one
tends to trend down. The second one seems to oscillate in a regular way.
The third graph tends to increase. All these trends are artefacts of
smoothing. Each graph shows the same data as the graph just above it.

Smoothing the data creates the impression of trends by ensuring that any
large random swing to a high or low value is amplified, while the point-to-
point variability is muted. A key assumption of correlation, linear
regression and nonlinear regression is that the data are independent of
each other. With smoothed data, this assumption is not true. If a value
happens to be super high or low, so will the neighboring points after
smoothing. Since random trends are amplified and random scatter is
muted, any analysis of smoothed data (that doesn't account for the

smoothing) will be invalid.

Mathematical details

e The first derivative is calculated as follows (x, and Y are the arrays of
data; x' and y' are the arrays that contain the results).
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x'[i] = (x[i+1] + x[i]) / 2
y' at x'[i] = (y[i+1] - y[i]) / (x[i+1] - x[i])

e The second derivative is computed by running that algorithm twice, to
essentially compute the first derivative of the first derivative.

e Prism uses the trapezoid ruleP™ to integrate curves. The X values of the
results are the same as the X values of the data you are analyzing. The
first Y value of the results equals a value you specify (usually 0.0). For
other rows, the resulting Y value equals the previous result plus the
area added to the curve by adding this point. This area equals the
difference between X values times the average of the previous and this
Y value.

e Smoothing is done by the method of Savistsky and Golay (1).

e If you request that Prism both both smooth and convert to a derivative
(first or second order) or integral, Prism does the steps sequentially.
First it creates the derivative or integral, and then it smooths.

Reference

1. A. Savitzky and M.J].E. Golay, (1964). Smoothing and Differentiation
of Data by Simplified Least Squares Procedures. Analytical Chemistry 36
(8): 1627-1639

5.5.2 Areaunder the curve
How to: Area under the curve

The area under the curve is an integrated measurement of a measurable
effect or phenomenon. It is used as a cumulative measurement of drug
effect in pharmacokinetics and as a means to compare peaks in
chromatography.

Note that Prism also computes the area under a Receiver Operator
Characteristic (ROC) curve as part of the separate ROC analysis™*.

Start from a data or results table that represents a curve. Click Analyze
and choose Area under the curve from the list of XY analyses.
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Parameters: Area Under Curve .
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Interpreting area-under-the-curve results

If your data come from chromatography or spectroscopy, Prism can break
the data into separate regions and determine the highest point (peak) of
each. Prism can only do this, however, if the regions are clearly defined:
the signal, or graphic representation of the effect or phenomenon, must
go below the baseline between regions and the peaks cannot overlap.

For each region, Prism shows the area in units of the X axis times units of
the Y axis. Prism also shows each region as a fraction of the total area
under all regions combined. The area is computed using the trapezoid
rule. It simply connects a straight line between every set of adjacent
points defining the curve, and sums up the areas beneath these areas.

Next, Prism identifies the peak of each region. This is reported as the X
and Y coordinates of the highest point in the region and the two X
coordinates that represent the beginning and end of the region.

Prism may identify more regions than you are interested in. In this case,
go back to the Parameters dialog box and enter a larger value for the
minimum width of a region and/or the minimum height of a peak.
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Limitations of this analysis
Note these limitations:

e The baseline must be horizontal.

e There is no smoothing or curve fitting.

e Prism will not separate overlapping peaks. The program will not
distinguish two adjacent peaks unless the signal descends all the way
to the baseline between those two peaks. Likewise, Prism will not
identify a peak within a shoulder of another peak.

e If the signal starts (or ends) above the baseline, the first (or last)
peak will be incomplete. Prism will report the area under the tails it

“sees”.

e Prism does not extrapolate back to X=0, if your first X value is greater
than zero.

e Prism does not extrapolate beyond the highest X value in your data
set, so does not extrapolate the curve down to the baseline.

e Prism no longer insists that the X values be equally spaced. When it
sums the areas of the trapezoids, it is fine if some are fatter than
others.

How Prism computes area under the curve

Prism computes the area under the curve using the trapezoid rule,
illustrated in the figure below.

AKX A A

In Prism, a curve (created by nonlinear regression) is simply a series of
connected XY points, with equally spaced X values. Prism can compute
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area under the curve also for XY tables you enter, and does not insist that
the X values be equally spaced. The left part of the figure above shows
two of these points and the baseline as a dotted line. The area under that
portion of the curve, a trapezoid, is shaded. The middle portion of the
figure shows how Prism computes the area. The two triangles in the
middle panel have the same area, so the area of the trapezoid on the left
is the same as the area of the rectangle on the right (whose area is easier
to calculate). The area, therefore, is AX*([(Y1+Y2)/2]-Baseline]. Prism
uses this formula repeatedly for each adjacent pair of points defining the
curve.

The area is computed using the baseline you specify and the curve
between two X values. Which X values?

¢ If all your data points are larger than the baseline, the AUC calculations
start at the lowest X value in your data set and end at the largest X
value. Note that Prism does not extend the curve beyond the X range of
your data.

e If the Y values at the lowest X values are below your baseline: Prism
finds the smallest X value in your data associated with a Y value greater
than the baseline. It draws a line between that point and the point with
the next smallest X value in your data set. It then uses linear
interpolation to find where that line crosses the baseline, and uses that
interpolated value as the first X value to compute the AUC.

e If the Y values at the largest X values are below your baseline: Prism
finds the largest X value in your data associated with a Y value greater
than the baseline. It draws a line between that point and the point with
the next largest X value in your data set. It then uses linear
interpolation to find where that line crosses the baseline, and uses that
interpolated value as the last X value to compute the AUC.

The standard error and confidence interval of the AUC

If you enter data with replicate Y values, or as Mean and SD or SEM,
Prism reports a SE and confidence interval for the AUC using the method
described by Gagnon (1). If you entered replicate Y values in subcolumns,
Prism assumes these are replicate measurements in one experiment. If
each subcolumn is in fact a different repeated experiment, Prism does not
compute one AUC per subcolumn, and then average those values. The
95% confidence interval equals the AUC plus or minus 1.96 times the SE.
It uses the z distribution (so always 1.96) rather than the t distribution
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(where the value would depend on sample size) because this was used in
references 1-3. With more than a few dozen points defining the curve, the
t and z methods will be nearly indistinguishable.

Prism does not compare peaks to provide a confidence interval for the
difference or the corresponding P value. But you can get Prism to do this
with a bit of work:

1. Create a new Grouped table, formatted for entry of mean, sem and n.
You will enter values only into the first row of this table.

2. Enter the AUC values as means.
3. Enter the SE of the AUC values as "SEM".

4. Define the df for each group as the number of data points for that
group minus the number of concentrations.

5. For n, enter one more than the df. When Prism does the t tests, it will
subtract 1 from the entered n to obtain the df, which will now be
correct.

6. Click analyze and choose the t test if you want to compare two AUCs,
or one-way ANOVA if you want to compare three or more.

More details and full example.

What counts as a peak?

By default, Prism only considers points above the baseline to be part of
peaks, so only reports peaks that stick above the baseline. You can
choose to consider peaks that go below the baseline.

By default, Prism ignores any peaks whose height is less than 10% of the
distance from minimum to maximum Y value, but you can change this
definition in the area under the curve parameters dialog. You can also tell
it to ignore peaks that are very narrow.

Total peak area vs. total area vs. net area

Prism reports the area under the peaks in two or three ways:
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e Total Area. This sums positive peaks, negative peaks, peaks that are
not high enough to count, and peaks that are too narrow to count. The
only choice you make in the analysis dialog that affects the definition of
total area is the definition of the baseline.

e Total Peak Area. The sum of the peaks you asked Prism to consider.
This value is affected by several choices in the analysis dialog: The
definition of baseline, your choice about including or ignoring negative
peaks, and your definition of peaks too small to count.

e Net Area. You'll only see this value if you ask Prism to define peaks
below the baseline as peaks. It is the difference computed by
subtracting the area of peaks below the baseline from the area of peaks
above the baseline.

Reference

1. Robert C. Gagnon and John J. Peterson, Estimation of Confidence
Intervals for Area Under the Curve from Destructively Obtained
Pharmacokinetic Data, Journal of Pharmacokinetics and
Pharmacodynamics, 26: 87-102, 1998.

2. Bailer A. J. (1988). Testing for the equality of area under the curves
when using destructive measurement techniques. Journal of
Pharmacokinetics and Biopharmaceutics, 16(3):303-309.

3. Jaki T. and Wolfsegger M. J. (2009). A theoretical framework for

estimation of AUCs in complete and incomplete sampling designs.
Statistics in Biopharmaceutical Research, 1(2):176-184.

5.6 Normality (and lognormality) tests

Prism can test for normality as part of the Column
Statistics analysis. It can also test for normality of
residuals from nonlinear regression, as part of the

nonlinear regression analysis.
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5.6.1 How to: Normality test
Analyzing column data
1. Create a Column data table so each data set is in a single Y column.

2. Click Analyze, look at the list of Column analyses, and choose
normality tests.

3. Prism offers four options for testing for normality. Choose™* one, or
more than one, of these options. You may also choose to test for
lognormality®** and to compare®* normal and lognormal
distributions.

Parameters: Normality and Lognormality Tests X

Which distribution(s) to test?
Normal (Gaussian) distribution
[[] Lognormal distribution

|:| Compute the relative likelihood of sampling from a Gaussian (normal) vs. a
lognormal distribution (assuming no other possibilities)

Methods to test distribution(s)

Anderson-Darling fest

D'Agostino-Pearson omnibus normality test

Shapiro-Wilk normality test

Kolmogerov-Smirmov nermality test with Dallal-Wilkinson-Lilliefor P value
Graphing options

Create a QQ plot
Subcolumns

© Average the replicates in each row, and then perform the calculation for each
column

(O Perform calculations on each subcolumn separatelly

(O Treat all the values in all subcalumns as single set of data

Calculations

Significance level (alpha)

Output

P value style: |GP:0.1234 {ns), 0.0332 (*), 0.0021 (*}), 0.0 ~
Show E 2 significant digits.

-

] Make these choices the default for fulure analyses.

Learn Cancel
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5.6.2

Analyzing normality of residuals from nonlinear regression

A residual is the distance of a point from the best-fit curve. One of the
assumptions of linear and nonlinear regression is that the residuals follow
a Gaussian distribution. You can test this with Prism. When setting up the
nonlinear regression, go to the Diagnostics tab, and choose one (or more
than one) of the normality tests.

Analyzing normality of residuals from linear regression

Prism's linear regression analysis does not offer the choice of testing the
residuals for normality. But this limitation is easy to work around. Run
nonlinear regression, choose a straight line model, and you'll get the
same results as linear regression with the opportunity to choose
normality testing. This is just one of many reasons to fit straight lines
using the nonlinear regression analysis.

Choosing a normality test

Prism offers four normality tests. Why is there more than one way to test
normality? There are many ways a distribution can deviate from a
Gaussian distribution, so different normality tests give different results.

We recommend the D'Agostino-Pearson normality test. It first
computes the skewness and kurtosis®** to quantify how far the
distribution is from Gaussian in terms of asymmetry and shape. It then
calculates how far each of these values differs from the value expected
with a Gaussian distribution, and computes a single P value from the sum
of these discrepancies. It is a versatile and powerful normality test, and is
recommended. Note that D'Agostino developed several normality tests.
The one used by Prism is the "omnibus K2" test.

An alternative is the Anderson-Darling test. It computes the P value by
comparing the cumulative distribution of your data set against the ideal
cumulative distribution of a Gaussian distribution. It takes into account
the discrepancies at all parts of the cumulative distribution curve (unlike
the Kolmogorov-Smirnov test, see below).

Another alternative is the Shapiro-Wilk normality test. We prefer the
D'Agostino-Pearson test for two reasons. One reason is that, while the
Shapiro-Wilk test works very well if every value is unique, it does not
work as well when several values are identical. The other reason is that
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the basis of the test is hard to understand. There are several ways to
compute the Shapiro-Wilk test. Prism uses the method of Royston (1).

Earlier versions of Prism offered only the Kolmogorov-Smirnov test. We
still offer this test (for consistency) but no longer recommend it. It
computes a P value from a single value: the largest discrepancy between
the cumulative distribution of the data and a cumulative Gaussian
distribution. This is not a very sensitive way to assess normality, and we
now agree with this statement!: "The Kolmogorov-Smirnov test is only a
historical curiosity. It should never be used." (2). Note that both this test and
the Anderson-Darline test compare the actual and ideal cumulative distributions.
The distinction is that Anderson-Darling considers the discrepancies at all parts of
the curve, and Kolmogorov-Smirnov only look at the largest discrepancy.

The Kolmogorov-Smirnov method as originally published assumes that
you know the mean and SD of the overall population (perhaps from prior
work). When analyzing data, you rarely know the overall population mean
and SD. You only know the mean and SD of your sample. To compute the
P value, therefore, Prism uses the Dallal and Wilkinson approximation to
Lilliefors' method (3). Since that method is only accurate with small P
values, Prism simply reports “"P>0.10" for large P values. In case you
encounter any discrepancies, you should know that we fixed a bug in this
test many years ago in Prism 4.01 and 4.0b.

Reference . | [ | | | | | | |

1. P Royston, Remark AS R94: A Remark on Algorithm AS 181: The W-
test for Normality. Journal of the Royal Statistical Society. Series C
(Applied Statistics), Vol. 44, No. 4 (1995), pp. 547-551

2. RB D'Agostino, "Tests for Normal Distribution" in Goodness-Of-Fit
Techniques edited by RB D'Agostino and MA Stephens, Macel Dekker,
1986.

3. Dallal GE and Wilkinson L (1986), "An Analytic Approximation to the
Distribution of Lilliefors's Test Statistic for Normality," The American
Statistician, 40, 294-296.

5.6.3 Testing for lognormality

Prism can test the fit of your distribution to a lognormal distribution, using
four different lognormality tests. It does so simply. It first computes the
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5.6.4

logarithm of all the values, and then does the normality test(s) on the
logarithms.

If any of the values are zero or negative, the distribution cannot possibly
be lognormal, so Prism won't perform the lognormality tests.

Comparing normal and lognormal distributions

Prism compares the normal and lognormal distributions using a likelihood
test, and computes the relative likelihood that the data were sampled
from each. Notes:

e A lognormal distribution only contains positive numbers. Negative values
and zeroes are impossible in lognormal distributions. If any values are
zero or negative Prism does test for lognormality.

e Prism only fits those two distributions, and gives the percentage chance
that each is more likely to be the distribution from which the data were
sampled. Of course, there are an infinite number of other distributions
the data could be sampled from. Prism only asks which is more likely,
normal or lognormal. It won't notice if neither is very likely!

e Lognormal distributions are common in biology, so you'd think it would
be common to ask whether data are more likely to be sampled from
normal (Gaussian) or lognormal distributions. In fact, this comparison is
done rarely. Prism (as of 2017) seems to be unique in making this test
simple.

e For math details, see section 6.7.2 of Burnham and Anderson, Model
selection and multimodel inference: a practical information-theoretic
approach, 2nd edition. Basically, Prism fits a normal or lognormal
distribution using maximum likelihood method, and then compares the
two likelihoods. They point out that this is equivalent to comparing the
AIC of the two fits.

e Don't rely entirely on the results of the likelihood comparison. Also look
at the tests for normality and lognormality.

e Don't forget to look at graphs of the data distribution. Use the frequency
distribution analysis to plot a frequency distribution histogram. Always
look at the data before looking at statistical results. Also, the normality
test analysis can create two QQ plots, one assuming a normal
distribution and the other assuming a lognormal distribution. A QQ plot
made with the appropriate assumption should be nearly linear.
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5.6.5 QQ plot

When you run a normality test on column data or on residuals, Prism (new
with Prism 8) can plot a QQ plot. There are multiple ways to label the axes
of such graphs. Prism plots the actual Y values on the horizontal axis, and
the predicted Y values (assuming sampling from a Gaussian distribution)
on the Y axis. If the data were sampled from a Gaussian (normal)
distribution, you expect the points to follow a straight line that matches
the line of identity (which Prism shows).

Example QQ plot:

8- h-d
o
6
E e
0 R
g 4 .
o *
2 o
o
0 1 I I 1
0 2 4 6 8
Actual

5.6.6 Interpreting results: Normality tests
What question does the normality test answer?

The normality tests all report a P value. To understand any P value, you
need to know the null hypothesis. In this case, the null hypothesis is that

all the values were sampled from a population that follows a Gaussian
distribution.

The P value answers the question:

If that null hypothesis were true, what is the chance that a random
sample of data would deviate from the Gaussian ideal as much as
these data do?

Prism also uses the traditional 0.05 cut-off to answer the question
whether the data passed the normality test. If the P value is greater than
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0.05, the answer is Yes. If the P value is less than or equal to 0.05, the
answer is No.

What should I conclude if the P value from the normality test is high?

All you can say is that the data are not inconsistent with a Gaussian
distribution. A normality test cannot prove the data were sampled from a
Gaussian distribution. All the normality test can do is demonstrate that
the deviation from the Gaussian ideal is not more than you’d expect to
see with chance alone. With large data sets, this is reassuring. With
smaller data sets, the normality tests don’t have much power to detect
modest deviations from the Gaussian ideal.

What should I conclude if the P value from the normality test is low?

The null hypothesis is that the data are sampled from a Gaussian
distribution. If the P value is small enough, you reject that null hypothesis
and so accept the alternative hypothesis that the data are not sampled
from a Gaussian population. The distribution could be close to Gaussian
(with large data sets) or very far form it. The normality test tells you
nothing about the alternative distributions.

If you P value is small enough to declare the deviations from the Gaussian
idea to be "statistically significant", you then have four choices:

e The data may come from another identifiable distribution. If so, you
may be able to transform your values to create a Gaussian distribution.
For example, if the data come from a lognormal distribution, transform
all values to their logarithms.

e The presence of one or a few outliers might be causing the normality
test to fail. Run an outlier test. Consider excluding the outlier(s).

e If the departure from normality is small, you may choose to do nothing.
Statistical tests tend to be quite robust to mild violations of the
Gaussian assumption.

e Switch to nonparametric tests that don’t assume a Gaussian
distribution. But the decision to use (or not use) nonparametric tests is
a big decision. It should not be based on a single normality test and
should not be automated®*.
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5.6.7 Q&A: Normality tests

Expand all answers Collapse all answers

= Why the term "normality"?

Because Gaussian distributions are also called Normal distributions.
= Which normality test is best?

Prism offers four normality tests (offered as part of the Column Statistics
analysis):

We recommend using the D'Agostino-Pearson omnibus test. The
Shapiro-Wilk test also works very well if every value is unique, but does
not work well when there are ties. The basis of the test is hard for
nonmathematicians to understand. For these reasons, we prefer the
D'Agostino-Pearson test, even though the Shapiro-Wilk test works well in
most cases.

The Kolmogorov-Smirnov test, with the Dallal-Wilkinson-Lilliefor
corrected P value, is included for compatibility with older versions of
Prism, but is not recommended.

- Why do the different normality tests give different results?

All three tests ask how far a distribution deviates from the Gaussian ideal.
Since the tests quantify deviations from Gaussian using different
methods, it isn't surprising they give different results. The fundamental
problem is that these tests do not ask which of two defined distributions
(say, Gaussian vs. exponential) better fit the data. Instead, they compare
Gaussian vs. not Gaussian. That is a pretty vague comparison. Since the
different tests approach the problem differently, they give different
results.

= How many values are needed to compute a normality test?

The Kolmogorov-Smirnov test requires 5 or more values. The Shapiro-
Wilk test requires 3 or more values. The D'Agostino test requires 8 or

© 1995-2020 GraphPad Software, LLC



246 GraphPad Statistics Guide

more values, as does the Anderson-Darling test.
= What question does the normality test answer?

The normality tests all report a P value. To understand any P value, you
need to know the null hypothesis. In this case, the null hypothesis is that
all the values were sampled from a Gaussian distribution. The P value
answers the question:

If that null hypothesis were true, what is the chance that a random
sample of data would deviate from the Gaussian ideal as much as these
data do?

= What cut-off does Prism use when deciding whether or not a data set
passed a normality test?

You set the threshold in the analysis dialog. The default is to use the
traditional 0.05 cut-off. If P<0.05, the data do not pass the normality
test. If P> 0.05, the data do pass the normality test. This cut-off, of

course, is totally arbitrary.

- So it tells me whether a data set is Gaussian?

No. A population has a distribution that may be Gaussian or not. A sample
of data cannot be Gaussian or not Gaussian. That term can only apply to
the entire population of values from which the data were sampled.

= Are any data sets truly sampled from ideal Gaussian distributions?

Probably not. In almost all cases, we can be sure that the data were not
sampled from an ideal Gaussian distribution. That is because an ideal
Gaussian distribution includes some very low negative humbers and some
super high positive values.Those values will comprise a tiny fraction of all
the values in the Gaussian population, but they are part of the
distribution. When collecting data, there are constraints on the possible
values. Pressures, concentrations, weights, enzyme activities, and many
other variables cannot have negative values, so cannot be sampled from
perfect Gaussian distributions. Other variables can be negative, but have
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physical or physiological limits that don’t allow super large values (or
have extremely low negative values).

- But don't t tests, ANOVA, and regression assume Gaussian
distributions?

Yes, but plenty of simulations have shown that these tests work well even
when the population is only approximately Gaussian.

= So do the normality tests figure out whether the data are close
enough to Gaussian to use one of those tests?

Not really. It is hard to define what "close enough" means, and the
normality tests were not designed with this in mind.

= Isn't the whole point of a normality test to decide when to use
nonparametric tests?

No. Deciding whether to use a parametric or nonparametric test is a hard
decision that should not be automated based on a normality test®*”.

= How should I interpet the K2, KS or W values reported by the
normality test?

Each normality test reports an intermediate value that it uses to compute
the P value. Unfortunately, there is no obvious way to interpret K2
(computed by the D'Agostino test), KS (computed by the Kolmogorov-
Smirnov test), or W (computed by Shapiro-Wilk test). As far as I know,
there is no straightforward way to use these values to decide if the
deviation from normality is severe enough to switch away from
parametric tests. Prism only reports these values so you can compare
results with texts and other programs.

- How useful are normality tests?
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5.7

5.7.1

Not very useful, in most situations. With small samples, the normality
tests don't have much power to detect nongaussian distributions. With
large samples, it doesn't matter so much if data are nongaussian, since
the t tests and ANOVA are fairly robust to violations of this standard.

What you would want is a test that tells you whether the deviations from
the Gaussian ideal are severe enough to invalidate statistical methods
that assume a Gaussian distribution. But normality tests don't do this.

References

1 RB D'Agostino, "Tests for Normal Distribution" in Goodness-Of-Fit
Techniques edited by RB D'Agostino and MA Stepenes, Macel Decker,
1986.

Parts of this page are excerpted from Chapter 24 of Motulsky, H.J].
(2010). Intuitive Biostatistics, 2nd edition. Oxford University Press.
ISBN=978-0-19-973006-3.

Identifying outliers

Prism can identify outliers in each column using
either the Grubbs' or ROUT method. Outlier
detection can be a useful way to screen data for

problems, but it can also be misused.

How to: Identify outliers

Identifying outliers in a stack of data is simple. Click Analyze from a
Column data table, and then choose Identify outliers from the list of
analyses for Column data. Prism can perform outlier tests with as few as

three values in a data set.
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.
Parameters: Remove Qutliers l&J

Method
@ ROUT [recomended; can find any number of outliers)

Grubbs' [can only find one outlier)
Iterative Grubbs' [can find several; nat recommended]

How aggresszive?

Femave _ Remaove
defiritive 1) likely
outliers outliers
)
=1%

Make theze choices the default for future analyzes

Learn | | Cancel | [ ak. l

Ll
=

Note: This page explains how to identify an outlier from a stack of values
in a data table formatted for Column data. Prism can also identify outliers
during nonlinear regression.

Which method?

Prism offers three methods for identifying outliers:

ROUT

We developed the ROUT method®™* to detect outliers while fitting a curve
with nonlinear regression. Prism adapts this method to detecting outliers
from a stack of values in a column data table. The ROUT method can
identify one or more outliers.

Grubbs' method

Grubbs' testP*™ is probably the most popular method to identify an outlier.
This method is also called the ESD method (Extreme Studentized
Deviate). It can only identify one outlier in each data set. Prism uses the
two-sided Grubbs' test, which means it will detect a value much larger
than the rest, or a value much smaller than the rest.

Iterative Grubbs'

While it was designed to detect one outlier, Grubbs' method is often
extended to detect multiple outliers. This is done using a simple method.
If an outlier is found, it is removed and the remaining values are tested
with Grubbs' test again. If that second test finds an outlier, then that
value is removed, and the test is run a third time ...
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While Grubb's test does a good job of finding one outlier in a data set, it
does not work so well with multiple outliers. The presence of a second
outlier in a small data set can prevent the first one from being detected.
This is called masking. Grubbs' method identifies an outlier by calculating
the difference between the value and the mean, and then dividing that
difference by the standard deviation of all the values. When that ratio is
too large, the value is defined to be an outlier. The problem is that the
standard deviation is computed from all the values, including the outliers.
With two outliers, the standard deviation can become large, which
reduces that ratio to a value below the critical value used to define
outliers. See an example of masking™*™.

Recommendation

e If you somehow knew for sure that the data set had either no outliers or
one outlier, then choose Grubbs' test.

¢ If you want to allow for the possibility of more than one outlier, choose
the ROUT method. Compare the Grubbs' and ROUT methods.

e Avoid the iterative Grubbs' method.

e When you create a box-and-whiskers plot with Prism, you can choose to
show Tukey whiskers, which shows points individually when their
distance from the median exceeds 1.5 times the interquartile range
(difference between the 75th and 25th percentiles). Some people define
these points to be outliers We did not implement this method of outlier
detection in Prism (beyond creating box-and-whiskers plots) because it
seems to not be widely used, and has no real theoretical basis. Let us
know if you'd like us to include this method of detecting outliers.

How aggressive?

There is no way to cleanly separate outliers from values sampled from a
Gaussian distribution. There is always a chance that some true outliers
will be missed, and that some "good points" will be falsely identified as
outliers. You need to decide how aggressively to define outliers. The
choice is a bit different depending on which method of outlier detection
you choose.
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Grubbs's test. Choose alpha.

With the Grubbs' test, you specify alpha. This has an interpretation
familiar from any tests of statistical significance. If there are no outliers,
alpha is the chance of mistakenly identifying an outlier.

Note that alpha applies to the entire experiment, not to each value.
Assume that you set alpha to 5% and test a data set with 1000 values,
all sampled from a Gaussian distribution. There is a 5% chance that the
most extreme value will be identified as an outlier. That 5% applies to the
entire data set, no matter how many values it has. It would be a mistake
to multiply 5% by the sample size of 1000, and conclude that you'd
expect 50 outliers to be identified.

Alpha is two-tailed, because the Grubbs test in Prism identifies outliers
that are either "too large" or "too small".

Rout method. Choose Q.

The ROUT method is based on the False Discovery Rate (FDR), so you
specify Q, which is the maximum desired FDR.

When there are no outliers (and the distribution is Gaussian), Q can be
interpreted just like alpha. When all the data are sampled from a
Gaussian distribution (so no outliers are present), Q is the chance of
identifying one or more outliers.

When there are outliers in the data, Q is the desired maximum false
discovery rate. If you set Q to 1%, then you are aiming for no more than
1% of the identified outliers to be false (are in fact just the tail of a
Gaussian distribution) and thus for at least 99% identified outliers to
actually be outliers (from a different distribution). If you set Q to 5%,
then you are expecting no more than 5% of the identified outliers to be
false and for at least 95% of the identified outliers to be real.

Recommendation

The trade-off is clear. If you set alpha or Q too high, then many of the
identified "outliers" will be actually be data points sampled from the same
Gaussian distribution as the others. If you set alpha or Q too low, then
you won't identify all the outliers.
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5.7.2

There are no standards for outlier identification. We suggest that you
start by setting Q to 1% or alpha to 0.01.

How Prism presents the results
The results are presented on three pages:

e Cleaned data (outliers removed). You could use this page as the input to
another analysis, such as a t test or one-way ANOVA.

e QOutliers only.

e Summary. This page lists the number of outliers detected in each data
set.

Analysis checklist: Outliers

If the outlier test identifies one or more values as being an outlier, ask
yourself these questions:

‘/Was the outlier value entered into the computer incorrectly?

If the "outlier" is in fact a typo, fix it. It is always worth going back to the
original data source, and checking that outlier value entered into Prism is
actually the value you obtained from the experiment. If the value was the
result of calculations, check for math errors.

‘/Is the outlier value scientifically impossible?

Of course you should remove outliers from your data when the value is
completely impossible. Examples include a negative weight, or an age (of
a person) that exceed 150 years. Those are clearly errors, and leaving
erroneous values in the analysis would lead to nonsense results.

‘/Is the assumption of a Gaussian distribution dubious?

Both the Grubbs' and ROUT tests assume that all the values are sampled
from a Gaussian distribution, with the possible exception of one (or a few)
outliers from a different distribution. If the underlying distribution is not
Gaussian, then the results of the outlier test is unreliable. It is especially
important to beware of lognormal distributions®*. If the data are sampled
from a lognormal distribution, you expect to find some very high values
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which can easily be mistaken for outliers. Removing these values would
be a mistake.

‘/Is the outlier value potentially scientifically interesting?

If each value is from a different animal or person, identifying an outlier
might be important. Just because a value is not from the same Gaussian
distribution as the rest doesn't mean it should be ignored. You may have
discovered a polymorphism in a gene. Or maybe a new clinical syndrome.
Don't throw out the data as an outlier until first thinking about whether
the finding is potentially scientifically interesting.

v Does your lab notebook indicate any sort of experimental problem with
that value

It is easier to justify removing a value from the data set when it is not
only tagged as an "outlier" by an outlier test, but you also recorded
problems with that value when the experiment was performed.

‘/ Do you have a policy on when to remove outliers?

Ideally, removing an outlier should not be an ad hoc decision. You should
follow a policy, and apply that policy consistently.

‘/If you are looking for two or more outliers, could masking be a
problem?

Masking®'*is the name given to the problem where the presence of two
(or more) outliers, can make it harder to find even a single outlier.

If you answered no to all those questions...

If you've answered no to all the questions above, there are two
possibilities:

e The suspect value came from the same Gaussian population as the
other values. You just happened to collect a value from one of the tails

of that distribution.

e The suspect value came from a different distribution than the rest.
Perhaps it was due to a mistake, such as bad pipetting, voltage spike,
holes in filters, etc.
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5.8

5.8.1

If you knew the first possibility was the case, you would keep the value in
your analyses. Removing it would be a mistake.

If you knew the second possibility was the case, you would remove it,
since including an erroneous value in your analyses will give invalid
results.

The problem, of course, is that you can never know for sure which of
these possibilities is correct. An outlier test cannot answer that question
for sure. Ideally, you should create a lab policy for how to deal with such
data, and follow it consistently.

If you don't have a lab policy on removing outliers, here is suggestion:
Analyze your data both with and without the suspected outlier. If the
results are similar either way, you've got a clear conclusion. If the results
are very different, then you are stuck. Without a consistent policy on
when you remove outliers, you are likely to only remove them when it
helps push the data towards the results you want.

One sample t test and Wilcoxon signed rank test

You've measured a variable in one group, and the
means (or median) is not the same as expected by
theory (or by the null hypothesis). Is that due to
chance? Or does it tell you the mean (or median)
of the values is really different from the

hypothetical value?

How to: One-sample t test and Wilcoxon signed rank test

In prior versions of Prism, the one-sample t test and the Wilcoxon rank
sum tests were computed as part of Prism's Column Statistics analysis.
Starting with Prism 8, there is a separate analysis in Prism for these
tests.

1. Create a Column data table.
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5.8.2

5.8.3

2. Enter each data set in a single Y column. So all values from each
group are stacked into a column. Prism will perform a one-sample t
test (or Wilcoxon rank sum test) on each column you enter.

3. Click Analyze, look in the list of Column analyses, and choose one-
sample t and Wilcoxon test.

Experimental design tab

Choose test

Choose one of two tests:

e A one-sample t test compares the mean of a single column of humbers
against a hypothetical mean that you provide. It assumes the values
were sampled from a Gaussian distribution.

e The nonparametric™* Wilcoxon signed rank test compares the median of
a single column of numbers against a hypothetical median. Don't

confuse it with the Wilcoxon matched pairs test®* which compares two
paired or matched groups.

Hypothetical value

Enter the hypothetical value to which you wish to compare the mean (t
test) or median (Wilcoxon test). This value is often 0, or 100 (when values
are percentages), or 1.0 (when values are ratios).

With the Wil