## Please enable JavaScript to view this site.

 Navigation: PRINCIPLES OF STATISTICS > P Values How Prism computes P values from statistical ratios

## Calcuations built-in to Prism

GraphPad Prism report exact P values with most statistical calculations using these algorithms, adapted from sections 6.2 and 6.4 of Numerical Recipes.

PFromF(F_Ratio, DF_Numerator, DF_Denominator) =

BetaI(DF_Denominato /2, DF_Numerator/2, DF_Denominator / (DF_Denominator + DF_Numerator * F_Ratio))

PFromT(T_Ratio, DF) = BetaI(DF /2, 1/2, DF / (DF + T_Ratio^2))

PFromZ(Z_Ratio) = PFromT(Z_Ratio, Infinity)

PFromR(R_Value) = PFromT(|R_Value| / SQRT((1 - R_Value^2)/DF) , DF)

PFromChi2(Chi2_Value, DF) = GammaQ(DF / 2, Chi2Value /2)

Note that BetaI is the incomplete beta function, and GammaQ is the incomplete gamma function. The variable names should all be self-explanatory.

## Calculations with newer versions of Excel

If you want to compute P values using newer (2010 and later) Excel, use these functions:

 P value from F =F.DIST.RT (F, DFn, DFd) P value from t (two tailed) =T.DIST.2T(t, df) P value from Chi Square =CHISQ.DIST.RT(ChiSquare, DF) P value from z (two tailed) =2*(1.0-NORM.S.DIST(z,TRUE))

## Calculations with older versions of Excel

If you want to compute P values using older (pre 2010) Excel, use these functions:

 P value from F =FDIST (F, DFn, DFd) P value from t (two tailed) =TDIST (t, df, 2) (The third argument, 2, specifies a two-tail P value.) P value from Chi Square =CHIDIST (ChiSquare, DF) P value from z (two tailed) =2*(1.0-NORMSDIST(z))

## Reference

Numerical Recipes 3rd Edition: The Art of Scientific Computing, by William H. Press, Saul A. Teukolsky, William T. Vetterling, IBSN:0521880688.